The ReconOS Project: Real-Time Multitasking on Reconfigurable Architectures

Klaus Danne, Enno Lübbers and Marco Platzner
{danne, enno.luebbers, platzner}@upb.de
Computer Engineering Group
University of Paderborn

Colloquium of DFG SPP 1148 (Rekonfigurierbare Rechensysteme)
June 2006, Darmstadt
Motivation

trends
- embedded systems based on reconfigurable hardware (e.g. system on chip)
- device densities increase, partial reconfigurability improves
- many applications have dynamic task sets

multitasking in hardware
- circuits turned into hardware tasks
- runtime environment schedules, places and executes these tasks

investigate techniques to execute periodic real-time tasks
- models different from single- / multiprocessor
- rarely studied for reconfigurable hardware
Overview

✓ motivation

■ models, metrics, goals

■ three scheduling approaches
 • global EDF
 • partitioned EDF
 • server based

■ comparison and realization

■ reconfigurable hardware operating system (ReconOS)
 • concept
 • current work and next steps
Models and Metrics

- set of periodic real-time tasks $\Gamma = \{T_1, \ldots, T_n\}$
 - relative deadline equals period P_i
 - computation time C_i
 - area A_i

- system model
 - preemptive multitasking
 - task set R can be executed in parallel, iff

$$\sum_{T_i \in R} A_i \leq 1$$
Utilization Metrics

- **time utilization**

\[U^T(\Gamma) = \sum_{T_i \in \Gamma} \frac{C_i}{P_i} \]

 - captures the fraction of time a task set \(\Gamma \) occupies the device when the tasks are executed sequentially

- **system utilization**

\[U^S(\Gamma) = \sum_{T_i \in \Gamma} \frac{C_i}{P_i} A_i \]

 - captures the average system load generated by task set \(\Gamma \)

<table>
<thead>
<tr>
<th>(T_i)</th>
<th>(P_i)</th>
<th>(C_i)</th>
<th>(A_i)</th>
<th>(U^T(T_i))</th>
<th>(U^S(T_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td>4</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>(T_2)</td>
<td>6</td>
<td>5</td>
<td>1/4</td>
<td>5/6</td>
<td>5/24</td>
</tr>
<tr>
<td>(T_3)</td>
<td>12</td>
<td>3</td>
<td>3/4</td>
<td>1/4</td>
<td>3/16</td>
</tr>
<tr>
<td>(T_4)</td>
<td>12</td>
<td>2</td>
<td>1/4</td>
<td>1/6</td>
<td>1/24</td>
</tr>
</tbody>
</table>

\[\begin{array}{c|c}
T & U^T(T) & U^S(T) \\
--- & --- & --- \\
 & 1.75 & 0.69 \\
\end{array} \]
Scheduler Goals:

- high scheduling performance
 - meet all task deadlines under high device utilization

- efficient schedulability test
 - guarantee at design time, that no deadline will be missed

- practicability
 - reasonable assumptions
 - few realization issues
 - low overhead
Global EDF Scheduling

- **EDF – Next Fit (EDF-NF)**
 - ready tasks are queued according to non-decreasing deadlines
 - scan through the ready queue on every task release and termination
 - if a task fits onto the device, add it to the set of running tasks and execute it
 - otherwise, postpone the task and proceed with the next task in the queue

- example

<table>
<thead>
<tr>
<th>T_i</th>
<th>P_i</th>
<th>C_i</th>
<th>A_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>4</td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td>T_2</td>
<td>6</td>
<td>5</td>
<td>1/4</td>
</tr>
<tr>
<td>T_3</td>
<td>12</td>
<td>3</td>
<td>3/4</td>
</tr>
<tr>
<td>T_4</td>
<td>12</td>
<td>2</td>
<td>1/4</td>
</tr>
</tbody>
</table>
Global EDF Schedulability

- "simulate" through the hyper period of the task set
 - which is unrealistic for all but the smallest task sets

- schedulability test based on task parameters

\[
\forall T_k \in \Gamma : \\
U^S(\Gamma) \leq (A(H) - A_{max}) \cdot (1 - U^T(T_k)) + U^S(T_k)
\]

- can be evaluated in linear time
- sufficient, but not necessary
- uses resource augmentation approach and is based on the multi-processor scheduling test of [Goossens, Funk & Baruah, 2003]

[Danne, K. & Platzner, M. An EDF Schedulability Test for Periodic Tasks on Reconfigurable Hardware Devices, (LCTES 2006)]
Partitioned EDF Scheduling

- partitioned EDF
 - the task set Γ is partitioned into subsets G_1, \ldots, G_m
 - each subset G_i is scheduled separately by sequential EDF

- solved by
 - integer linear programming
 - heuristic Next-Fit Decreasing-Area

example:

\[G_1 = \{T_1, T_3, T_4\} \]
\[G_2 = \{T_2\} \]

<table>
<thead>
<tr>
<th>T_i</th>
<th>P_i</th>
<th>C_i</th>
<th>A_i</th>
<th>$U^T(T_i)$</th>
<th>$U^S(T_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>4</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>T_2</td>
<td>6</td>
<td>5</td>
<td>1/4</td>
<td>5/6</td>
<td>5/24</td>
</tr>
<tr>
<td>T_3</td>
<td>12</td>
<td>3</td>
<td>3/4</td>
<td>1/4</td>
<td>3/16</td>
</tr>
<tr>
<td>T_4</td>
<td>12</td>
<td>2</td>
<td>1/4</td>
<td>1/6</td>
<td>1/24</td>
</tr>
</tbody>
</table>

1.75 0.69

[Danne, K. & Plattner, M. Partitioned Scheduling of Periodic Real-Time Tasks onto Reconfigurable Hardware (RAW 2006)]
Server-based Scheduling

■ approach
 • reduce the number of different configurations by grouping tasks together

■ server task S_i
 • artificial periodic task that reserves area and execution time for other tasks
 \[S_i = (R_i, P_i, C_i, A_i) \]
 \[R_i = \{T_a, T_b, \ldots \} \subseteq \Gamma \]
 • when the server S_i executes, all tasks R_i execute
 • the server area A_i is the cumulative area over all tasks R_i

■ find a set of servers Ω that
 • can be sequentially executed by EDF, ie. $U^T(\Omega) \leq 1$
 • reserve sufficient time and area, such that all tasks meet their deadlines
MSDL Scheduling

Example

<table>
<thead>
<tr>
<th>S_i</th>
<th>R_i</th>
<th>P_i</th>
<th>C_i</th>
<th>A_i</th>
<th>U^T_i</th>
<th>U^S_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>T_1</td>
<td>4</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>S_2</td>
<td>T_2</td>
<td>6</td>
<td>5</td>
<td>1/4</td>
<td>5/6</td>
<td>5/24</td>
</tr>
<tr>
<td>S_3</td>
<td>T_3</td>
<td>12</td>
<td>3</td>
<td>3/4</td>
<td>1/4</td>
<td>3/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.58</td>
<td>0.65</td>
</tr>
</tbody>
</table>

S'_1	T_1	4	0	1/2	1/2	1/4
S'_2	T_2	6	3	1/4	1/2	1/8
S'_3	T_3	12	3	3/4	1/4	3/16
S'_4	T_1, T_2	4	2	3/4	1/2	3/8
					1.25	0.69

S'_2	T_2	6	0	1/4	1/2	1/8
S'_3	T_3	12	0	3/4	1/4	3/16
S'_4	T_1, T_2	4	2	3/4	1/2	3/8
S'_5	T_2, T_3	6	3	1	1/2	1/2
					1.12	0.88

FPGA area

[Smaller text]

[Smaller text]

trading area for time

[Danne, K. & Platzner, M. A Heuristic Approach to Schedule Periodic Real-Time Tasks on Reconfigurable Hardware (FPL 2005)]

[Danne, K. & Platzner, Periodic Real-Time Scheduling for FPGA Computers (WISES 2005)]
Prototype Implementation for MSDL

- pure FPGA approach (no CPU)
 - mini RTOS in hardware on FPGA
 - implemented in Handel-C

- full device reconfiguration

- automatic system-synthesis
 - planning by MSDL scheduler
 - Handel-C pre-processor
 - Handel-C compiler + Xilinx backend tools

[Danne, K. & Muehlenbernd, R. & Platzner, M. Executing hardware tasks on dynamically reconfigurable devices under real-time conditions (FPL 2006)]
Scheduling Performance

- analytic result: no dominance among the three approaches
- simulation results (on randomly generated task sets)

parameters:

\[C_i = \{1,2,\ldots,30\} \]
\[U^T(T_i) = [0.2,0.4] \]
\[A_i = [0.2,0.4] \]
Summary of Scheduling Approaches

<table>
<thead>
<tr>
<th></th>
<th>Global EDF</th>
<th>MSDL</th>
<th>Partitioned EDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedulability</td>
<td>"Simulation" / pessimistic test</td>
<td>Construct servers</td>
<td>ILP / NFDA heuristic</td>
</tr>
<tr>
<td>Performance</td>
<td>High / low</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Reconfiguration, area model</td>
<td>Partial, 1D variable, needs re-locatable tasks</td>
<td>Full</td>
<td>Partial, 1D slotted</td>
</tr>
<tr>
<td>Amount of configuration data</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Online scheduling</td>
<td>Yes</td>
<td>No</td>
<td>Maybe</td>
</tr>
</tbody>
</table>
Model Extensions

- reconfiguration overhead
 - analyzed and bounded for all three models
 - reasonably small, if configuration time < 10% of computation time
 - global EDF suffers more than partitioned EDF and MSDL

- tasks with implementation alternatives
 - e.g. fast & large vs. slow & small
 - improves scheduling performance

- tasks share RAM banks
 - schedule access to RAM ports

[Danne, K. & Platzner, M. Memory-demanding Periodic Real-Time Applications on FPGA Computers (Work-in-Progress proc. ECRTS 2005)]
Overview

✓ motivation

✓ models, metrics, goals

✓ three scheduling approaches
 • global EDF
 • partitioned EDF
 • server based

✓ comparison and realization

■ reconfigurable hardware operating system (ReconOS)
 • concept
 • current work and next steps
ReconOS

- flexible operating system for reconfigurable hardware
- simplifies embedded SoC development by providing common OS services for hardware and software tasks

programming model:
- operating system objects
 - tasks
 - shared memory
 - semaphores
 - queues/FIFOs
 - timers
 - ...

- services
 - task management
 - memory management
 - synchronization
 - communication
Execution Model

- OS is custom-tailored to application requirements
 - OS services and objects can be selectively included or omitted
 - efficient usage of resources (logic area, memory)
 - task set must be known at design time
 - parts of the OS can be implemented either in software or in hardware

- OS interface (OSIF) provides operating system services for hardware tasks

- uses partial reconfigurability
 - If supported by hardware
Current Work

- development platform: Xilinx ML403 evaluation board
 - Virtex-4FX FPGA with embedded PowerPC405
 - supports partial reconfiguration

- real-time operating system
 - modified eCos for PPC, ported to ML403 platform
 - OSIF hardware interface handles service requests from hardware tasks

```c
reconos_sem_post(o_osif, i_osif, handle);
```
```c
sysbus
```
```c
cyg_sem_post(handle)
```
```c
eCos
```
Next Steps

- implementation and evaluation of additional OS services
 - shared memory
 - timers, signals, queues
 - preemptive multitasking (full and partial reconfigurability)

- applications
 - image processing (e.g. visual object tracking)
 - cryptography
 - networking

- port to other reconfigurable platforms
 - XF-Board
 - Erlangen Slot Machine (ESM)
Overview

✓ motivation

✓ models, metrics, goals

✓ three scheduling approaches
 • global EDF
 • partitioned EDF
 • server based

✓ comparison and realization

✓ reconfigurable hardware operating system (ReconOS)
 • concept
 • current work and next steps