Temporale Partitionierung und Temporale Platzierung beim Entwurf Rekonfigurierbarer Rechensysteme

Franz J. Rammig, Florian Dittmann
Heinz Nixdorf Institute
University of Paderborn, Germany
Motivation

- Processing in space and time means
 - Multiple and different parts of algorithms with and without interdependencies are temporally present on the reconfigurable device

- Parts: modules, generations, etc...
 - Commonality: communication
 - Wire length is an issue

- Build parts w.r.t. optimization of the wire length
 - Appropriate partitioning of input graphs

- Instrument: spectral method
 - Quadratic optimization of the wire length
Motivation

- Reconfiguration costs time
 - Computation area must be prepared (reconfigured) before processing can start
 - Delay until processing on new area can start

- Several methods to cope with these challenges
 - Hide reconfiguration time: pipelined reconfiguration
 - Avoid reconfiguration: caching

- Means: Enhance spectral methods
 - Clustering methods
 - Weight of the nodes
 - Answering time optimized clustering
Agenda

- Motivation
- Retrospect (1st period)
 - Spectral method
 - Modeling approach using the Y-chart
- Outlook (2nd period)
 - Reconfigurable systems as pipelining systems
 - Temporal Partitioning
 - Phases of reconfigurable systems
 - Variations
 - Spectral methods and cluster building w.r.t. pipelining
 - Caching in reconfigurable systems
- Cooperation
- Conclusion
- References
Spectral Method Objective

- Spectral placement of input graphs w.r.t. wire length
 - Quadratic objective function
 - Nodes can be additionally weighted
 - Similar execution time
 - Communication ‘width’
 - Etc

- Method proposed by Hall (1970)
 - Input: LaPlacian Matrix
 - Output: spectral placement of nodes
 - Means: Eigenvectors etc.
 - Use: VLSI placement

- Allows effective cluster generation
Spectral Method

Goal achieved

- 3rd dimension for temporal domain
 - Can be built directly using Halls proposal
 - Cluster building along the time-axis \(t \)

- Alternative placement and partitioning principle
- Integrated concept to partition and place data flow graphs or task graphs on reconfigurable devices
Modeling Using the Y-chart
Challenges of Current Design Flows

- Model:
 - Dataflow/data stream
 - Spectral, temporal computation
 - Additional resource for OS

- Design challenges
 - Temporal and spatial dimension
 - See above (lack of model, technical difficulties)

- Practical examples
 - Vendor/device specific
 - Xilinx Virtex series (XAPP 290)
 - Atmel FPSLIC
Y-Chart Extension: Reconfiguration Level

- Summarizes properties of the reconfigurable system
- Only by considering the reconfiguration level, the system is a reconfigurable system
 - Without: not necessarily reconfigurable
- Encapsulation and collection of all important facts concerning the reconfiguration in one location
- Abstraction
Y-Chart Extension
Tool for Partial Bit-Stream Generation
Y-Chart Extension
UML Class Diagram Used in the Tool
Agenda

- Motivation
- Retrospect (1st period)
 - Spectral method
 - Modeling approach using the Y-chart
- Outlook (2nd period)
 - Reconfigurable systems as pipelining systems
 - Temporal Partitioning
 - Phases of reconfigurable systems
 - Variations
 - Spectral methods and cluster building w.r.t. pipelining
 - Caching in reconfigurable systems
- Cooperation
- Conclusion
- References
First Enhancement
From Temporal Partitioning to…

- First approach
 - Spectral methods: generations of DFG
 - Alternating execution of generations
 - Increase of the execution speed

- Avoid reconfiguration as much as possible (as it is costly)
- If necessary, reconfigure as smart (fast, etc.) as possible
 - Hide reconfiguration time

- Partitioning and Placement as key step towards above goals
 - Integrate pipelining in the partitioning and placement decisions
 - First: ways to describe reconfigurable systems w.r.t. pipelining
Reconfigurable Systems as Pipelining Systems … Abstracting Reconfigurable Systems

- Phases:
 - Run Time Reconfiguration: RTR
 - Execution: EX
Reconfigurable Systems as Pipelining Systems
Further Adaptations

- Multiple reconfiguration ports
 - Superscalar pipeline

- Adaptation of the sizes

- etc
Pipelining Spectral Methods

- Pipelining
 - Increase performance: maximize throughput
 - Constant pipeline clock

- Extend spectral methods to be usable for reconfigurable systems
 - Objective function to minimize wire length
 - Weight the nodes
 - Arrangement of nodes w.r.t. reconfiguration time, area, etc.

- Cluster generation
 - E.g. using simulated annealing
Caching Task Set

- Task Set
 - periodic
 - \#tasks > \#slots

- Run time environment
 - fixed and dynamic parts

![Diagram of caching process](image-url)
Caching Optimization

- Periodic execution
- Replacement strategy:
 - Best caching strategy
 - Realized with cut lines
 - Maximum distance
Agenda

- Motivation
- Retrospect (1st period)
 - Spectral method
 - Modeling approach using the Y-chart
- Outlook (2nd period)
 - Reconfigurable systems as pipelining systems
 - Temporal Partitioning
 - Phases of reconfigurable systems
 - Variations
 - Spectral methods and cluster building w.r.t. pipelining
 - Caching in reconfigurable systems
- Cooperation
- Conclusion
- References
Cooperation PadErOl (Erlangen & Oldenburg) “Durchgängiger Entwurfsfluss”

- Erlangen
 - High level design space exploration
- Oldenburg
 - OSSS+R
- Paderborn
 - Temporal placement on reconfigurable device

- Concrete case study
 - Tests
 - Improvements
 - Enhancement
 - Validation
- Generation of
 - Partial bit-streams
Multiple tasks scenario

- Combination of different alternatives (area + time trade-offs)
- Several Pareto-points
 - Partitioning method
- Caching
Conclusion

- Motivation
 - Wire length optimization → answering time optimization

- Retrospect
 - Spatial methods
 - Y-chart modeling

- New
 - Pipelining
 - Involving the spectral methods
 - Caching

- Cooperation
Meaningful References Since Last Workshop

- Dittmann, Florian and Bobda, Christophe: **Temporal Graph Placement on Mesh-Based Coarse Grain Reconfigurable Systems Using the Spectral Method** In: Int. Engineering System Symposium (IESS). Manaos, Brazil, 15 -17 Aug 2005
Thank you for your attention.

Florian Dittmann
Heinz Nixdorf Institute
University of Paderborn
Fuerstenallee 11
33102 Paderborn
Germany

Phone: +49 (0) 52 51/60 64 92
Fax: +49 (0) 52 51/60 65 02
Email: roichen@upb.de