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ABSTRACT
As today’s computer architectures are becoming more and more
heterogeneous, a plethora of options including CPUs, GPUs,
DSPs, reconfigurable logic (FPGAs), and other application-
specific processors come into consideration for close-to-sensor
processing. Especially, in the domain of image processing on
mobile devices, among numerous design challenges, a very strin-
gent energy budget is of utmost importance, making embedded
GPUs and FPGAs ideal targets for implementation.

Recently, the HIPAcc framework was proposed as a means for
automatic code generation of image processing algorithms for
embedded GPUs, based on a Domain-Specific Language (DSL).
Despite of huge advancements in High-Level Synthesis (HLS) for
FPGAs, designers are still required to have detailed knowledge
about coding techniques and the targeted architecture to achieve
efficient solutions. As a remedy, in this work, we propose
code generation techniques for C-based HLS from a common
high-level DSL description targeting FPGAs. Our approach
includes FPGA-specific memory architectures for handling point
and local operators, numerous high-level transformations, and
automatic test bench generation. We evaluate our approach
by comparing the resulting hardware accelerators to existing
frameworks in terms of performance and resource requirements.
Moreover, we assess the achieved energy efficiency in contrast to
software implementations, generated by HIPAcc from the same
code base, executed on GPUs.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design
Aids—Automatic synthesis; D.3.4 [Programming Languages]:
Processors—Code generation, Optimization, Retargetable com-
pilers; I.3.6 [Computer Graphics]: Methodology and Tech-
niques—Languages

General Terms
Design, Languages, Performance

Keywords
Code generation, domain-specific language, image processing,
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Figure 1: Design flow of the proposed combination of
HIPAcc and Vivado HLS.

1. INTRODUCTION
Algorithms for close-to-sensor processing, such as required by

advanced driver assistance systems and mobile scanners, are
becoming more and more complex and must deliver enough
performance to process vast amounts of data on embedded
devices with stringent resource and energy budgets. Due to
these constraints, ideal targets for the implementation are
hardware accelerators, such as embedded Graphics Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs).
Efficient implementations for these, however, require a deep
understanding of the algorithmic details and the hardware
architecture. To ease the burden on developers, DSLs aim
at combining architecture- and domain-specific knowledge,
thereby delivering performance, productivity, and portability.
So far, DSLs have been researched for a long time for Central
Processing Units (CPUs) as well as GPUs, and recently have
also targeted hardware design [8], which has mostly been the
prime domain for HLS. Over the past decades, C-based HLS
focusing on FPGAs has become very sophisticated, producing
designs that can rival hand-coded Register-Transfer Level (RTL).
A drawback is that these frameworks must be very flexible and
although being able to create an efficient hardware design from
a C-based language can significantly shorten the development
time, architectural knowledge and specific coding techniques
are still a must. A remedy to this situation is to increase
the level of abstraction even further and use a domain-specific
framework to generate code for FPGA HLS. HIPAcc is a publicly
available framework for the automatic code generation of image
processing algorithms on GPU accelerators. Starting from
a C++ embedded DSL HIPAcc delivers tailored code variants
for different target architectures, significantly improving the
programmer’s productivity. In this work, we use HIPAcc as
foundation and extend it to be able to generate C++ code
specific to the C-based HLS framework Vivado HLS from Xilinx.
The proposed design flow is depicted in Figure 1.
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Figure 2: For local operators on GPUs, memory trans-
fers are grouped for consecutive pixels, simultaneously
serving several parallel threads, each computing a sin-
gle output pixel.

The contributions of this work can be summarized as follows.

• We introduce FPGAs as a novel target to HIPAcc in order to
generate code for C-based HLS from a DSL.

• In detail, we discuss how the framework must be modified to
cope with the design challenges of the FPGA target.

• We evaluate our approach by assessing the performance
and energy requirements of the generated FPGA designs in
contrast to other hardware targets, supported by HIPAcc.

The generated target code is derived from a high-level de-
scription for image processing algorithms. Therefore, this work
uses the high-level description presented in [6].

2. BACKGROUND
Image processing on embedded devices is mainly impelled by

reduced energy consumption. As a consequence, certain imaging
operations are often mapped to Application-Specific Integrated
Circuit (ASIC) pipelines in packaged camera products.
A simple example are edge and feature detectors in image

processing pipelines. One of the well-known edge detectors is
the Laplacian operator, where multiple neighboring pixels are
accessed within a given window. We denote such an algorithm
as a local operator.

In the following, we will briefly discuss special considerations
and design challenges in order to produce efficient implemen-
tations of such operators for both design targets: Embedded
General Purpose GPUs (GPGPUs) and FPGAs.

2.1 Embedded GPU Solution
Embedded GPGPUs such as the ARM Mali-T600 or the

Qualcomm Adreno 300 series are programmable using Open
Computing Language (OpenCL) and offer a software-based
solution for energy-efficient image processing.
Those architectures apply a high degree of parallelism in

hardware by utilizing many compute cores simultaneously, as
depicted in Figure 2. Besides having many cores available,
massively exploiting Simultaneously Multithreading (SMT),
where multiple threads are mapped to a single core exchanging
on stalls, further increases the achievable extent of parallelism.

For a Laplacian operator with a 3× 3 window, this would re-
sult in 10 memory transfers and 9 Multiply-Accumulate (MAC)
operations for each thread. Fulfilling a memory transaction
request demands orders of magnitude more cycles than perform-
ing a compute operation. Therefore, local operators on GPUs
are memory-bound and the execution time depends, above all,
on the operator’s window size.
For memory-bound kernels, the amount of SMT running

on each core saturates at a certain level, depending on the
specific architecture at hand. However, the pipeline stages of the
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Figure 3: A combination of line buffers and memory
windows is typically used to process local operators
on streaming data.

GPU’s load and store units might still be underemployed, which
leaves space to further raise the achievable degree of parallelism.
Therefore, it can be beneficial to increase the number of load
and store operations per thread, by merging the execution of
multiple threads into a single one [14] (thread-coarsening). As
a downside, this technique significantly increases register usage,
which might reduce the overall number of threads the GPU can
stem.

A common technique to further reduce the impact of memory
reads, is to use local on-chip1 and texture memory. Texture
memory offers improved cache locality for two and three dimen-
sional data access patterns. In this way, especially for local
operators, the cache hit rate may be notably increased. How-
ever, on embedded GPGPUs, this feature is usually restricted
to certain formats, such as RGBA forcing the use of 4-channel
vector types. Moreover, compute cores of embedded GPGPUs
are almost solely based on Very Long Instruction Word (VLIW)
or Single Instruction Multiple Data (SIMD) units. Therefore,
if one cannot rely on the compiler’s ability for implicit vector-
ization, it is crucial to provide explicitly vectorized code for
achieving high performance on embedded GPGPUs.

2.2 FPGA
Due to their high computational power in combination with

excellent energy efficiency, FPGAs have not only recently been
a target for the implementation of signal processing systems [12].
In order to keep up with the high processing rates of GPUs, it
is vital to exploit the massive parallelism of the platform.
In case of image processing, many software developers are

used to having the whole image available in memory to perform
calculations. The situation is completely different for FPGA-
based image processing, where, foremost due to limited memory
resources, having the complete image in memory for processing
is unrealistic. With the advance of high-speed serial transceivers,
which are used to interconnect FPGAs with communication and
memory controllers, it has become a common approach to stream
data onto the FPGA, provide buffering for the calculations, and
immediately deliver the processed results to the off-chip sink as
it becomes available. As a consequence, in order to obtain an
efficient implementation of an image processing algorithm for
an FPGA platform, it must be seamlessly integrated with the
processing methodology.

Local operators, such as the Laplacian operator, often need to
access a pixel more than once. Thus, handling streaming data
on an FPGA requires a memory architecture to retain data for
multiple accesses. Memory resources on modern FPGAs can
be broadly categorized into Block RAMs (BRAMs) and Flip-
Flops (FFs). An efficient memory architecture for streaming
data uses a combination of line buffers for storage of complete

1Local on-chip memory is not available on current embedded
GPGPU architectures.
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Figure 4: Data causality when processing window-
based operators for streaming data.

image lines (BRAMs) and memory windows for the actual
processing of local neighborhoods (implemented using FFs), as
illustrated in Figure 3.
Another challenge for stream-based image processing using

local operators is depicted in Figure 4. When computing the
window around some center pixel (here at index (1,1)), almost
half of the data in the window are not available, yet. To ensure
that all data are available, it is necessary to enforce a delay, we
refer to as the group delay, before processing the window. For a
window of size w × w, the group delay t can be calculated as
t = ⌊w/2⌋.

One of the most important aspects for hardware acceleration
is to exploit the massive parallelism of the architecture and
pipeline as many of the operations as possible. Here, throughput
(how much data per time unit) and local latency (how many
clock cycles to complete one iteration) are contrasting design
goals that also affect design speed as well as required area and
energy. For streaming pipelines in image processing, a high
throughput is often considered more important, since the local
latency often becomes negligible in comparison to the amount
of pixels to process.

3. PROGRAMMING MODEL

3.1 Vivado HLS
Recently, Xilinx included the high-level synthesis tool Au-

toESL (formerly known as AutoPilot [15]) into the Vivado Design
Suite, renamed as Vivado HLS. Vivado HLS allows design en-
try in C/C++ or SystemC and delivers an HDL code (VHDL,
Verilog, and SystemC) for a synthesizable IP core. Vivado HLS
is specifically targeted at Xilinx FPGAs and fully integrates
with Xilinx IDEs. A broad range of synthesis directives can be
used for architecture-driven parallelization and optimization
in order to transform the sequential algorithm specification
into an efficient parallel hardware design. From SystemC, the
concept of data streams was adopted which enables the designer
to interconnect different modules and implement these in a
streaming pipeline. In contrast to several other commercial
HLS tools, Vivado HLS provides human readable HDL code,
which allows for manual alterations, which may come especially
handy for simulation and synthesis optimization. Although
being able to specify complex algorithms in a C-based language
might severely increase productivity, the implementation of
image processing system requires sophisticated architectural
knowledge in order to obtain high quality results that can keep
up with hand-coded implementations at RTL.

3.2 HIPAcc Framework
The Heterogeneous Image Processing Acceleration (HIPAcc)

framework [6] consists of a DSL that is embedded into C++ and
a source-to-source compiler. Exploiting the compiler, image
filter descriptions written in DSL code can be translated into
multiple target languages such as Compute Unified Device

1 // input image

2 const int width = 512, height = 512;

3 uchar4 *image = (uchar4 *) read_image(width , height , "input.pgm");

4

5 // coefficients for Laplacian operator

6 const int coef [3][3] = { { 0, 1, 0 },

7 { 1, -4, 1 },

8 { 0, 1, 0 } };

9

10 Mask <int > mask(coef);

11 Image <uchar4 > in(width , height);

12 Image <uchar4 > out(width , height);

13

14 // load image data

15 in = image;

16

17 // reading from in with mirroring as boundary condition

18 BoundaryCondition <uchar4 > bound(in, mask , BOUNDARY_MIRROR);

19 Accessor <uchar4 > acc(bound);

20

21 // output image

22 IterationSpace <uchar4 > iter(out);

23

24 // define kernel

25 Laplacian filter(iter , acc , mask);

26

27 // execute kernel

28 filter.execute ();

Listing 1: Example code for the Laplacian operator.

Architecture (CUDA), OpenCL, or Renderscript as used in
Android [7]. In this work, our approach is to generate code for
C-based HLS from a high-level description. This framework
will serve as a basis for generating appropriate C++ code that
can be further processed by Vivado HLS.

In the following sections, we will use the Laplacian operator
as a simple example for describing image filters and briefly
describe which source code transformations are applied and
how code generation is accomplished.

3.2.1 Domain-Specific Language
Embedded DSL code is written by using C++ template

classes provided by the HIPAcc framework. Therefore, DSL code
is written in a similar manner as using a framework API. In fact,
those compiler-known classes are fully functional and can be
compiled by a normal C++ compiler, serving as a reference CPU
implementation. However, with the HIPAcc source-to-source
compiler, code generation is involved that targets mainly GPU
accelerators.

The most essential C++ template classes for writing 2D image
processing DSL codes are: (a) an Image, which represents the
data storage for pixel values; (b) an IterationSpace defining
the Region Of Interest (ROI) for operating on the output
image; (c) an Accessor defining the ROI of the input image
and enabling filtering modes (e. g., nearest neighbor, bilinear
interpolation, etc.) on mismatch of input and output region
sizes; (d) a Kernel specifying the compute function executed
by multiple threads, each spawned for a single iteration space
point; (e) a Domain, which defines the iteration space of a
sliding window within each kernel; and (f) a Mask, which is a
more specific version of the Domain, additionally providing filter
coefficients for that window. Image accesses within the kernel
description are accomplished by providing relative coordinates.
To avoid out-of-bound accesses, kernels can further be instructed
to implement a certain boundary handling (e. g., clamp, mirror,
repeat) by specifying an instance of class BoundaryCondition.
Template parameters of all mentioned classes are used to define
the type of pixel data that is processed (e. g., represented as
integer or floating point), enforcing kernels to be consistent and
sound in terms of type conversion within the host language’s
type system.

To describe a Laplacian operator, we need to define a Mask
and load the appropriate filter coefficients, defined as constants,
see Listing 1 (lines 6–10). It is further necessary to create an



1 class Laplacian : public Kernel <uchar4 > {

2 private:

3 Accessor <uchar4 > &input;

4 Mask <int > &mask;

5

6 public:

7 Laplacian(IterationSpace <uchar4 > &iter ,

8 Accessor <uchar4 > &input , Mask <int > &mask)

9 : Kernel(iter), input(input), mask(mask) {

10 addAccessor (&input);

11 }

12

13 void kernel () {

14 int4 sum = { 0, 0, 0, 0 };

15 for (int y = -1; y <= 1; ++y)

16 for (int x = -1; x <= 1; ++x)

17 sum += mask(x, y) * convert_int4(input(x, y));

18 sum = max(sum , 0);

19 sum = min(sum , 255);

20 output () = convert_uchar4(sum);

21 }

22 };

Listing 2: Kernel for the Laplacian operator.

input and output image for storing pixel data and load initial
image data into the input image (lines 11–15). The input image
is bound to an Accessor with enabled boundary handling mode
mirroring (lines 18–19). After defining the iteration space, the
kernel can be instantiated (line 25) and executed (line 28).
Kernels are implemented by deriving from the framework’s

provided Kernel base class, inheriting a constructor for binding
the iteration space and a kernel() method. Within that
method the actual kernel code is provided, see Listing 2 (lines
14–20). Mask and input image are accessed using relative
coordinates (line 17). Thereby, it is ensured that out-of-bound
accesses are caught and handled appropriately according to
the specified boundary handling mode. To write the output
pixel value to the iteration space, the convolution result must
be assigned to the output() method (line 20).

Because the Laplacian operator is a local operator performing
standard convolution, it is also possible to describe the kernel
using the convolve() method shown in Listing 3. This method
takes three arguments: (a) the mask defining window size and
filter coefficients; (b) the reduction mode used to accumulate the
results of multiple iterations; and (c) a C++ lambda function
describing the computational steps that should be applied in
each iteration.

Additional HIPAcc language constructs for local operators also
provide more general operations for iteration and reduction
steps over local window regions. Those regions do not have to
be rectangular. Besides local operators, global operators are
also supported for describing reductions (min, max, or sum) of
images or an image region.

3.2.2 Code Generation
The HIPAcc compiler is based on the Clang/LLVM 3.4 compiler

infrastructure2. Utilizing the Clang front end, HIPAcc parses
C/C++ code and generates an internal Abstract Syntax Tree
(AST) representation. Operating on this representation, HIPAcc

will generate two kinds of code: Host code for managing kernel
launches and memory transfers, and device code containing the
actual kernel description in the specified target language (e. g.,
CUDA, OpenCL, Rendescript).

3.2.3 Generating Code for Vivado HLS
Considering Vivado HLS as a target for code generation

involves numerous challenges to overcome. Convolution masks
provided in DSL code must be translated in a more suitable
version for FPGAs and hardware accelerators. The same applies
to DSL vector types that need to be wrapped into integer

2http://clang.llvm.org

1 int4 sum = convolve(mask , HipaccSUM , [&] () -> int4 {

2 return mask() * convert_int4(input(mask));

3 });

4 sum = max(sum , 0);

5 sum = min(sum , 255);

6 output () = convert_uchar4(sum);

Listing 3: Alternative convolution kernel.
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Figure 5: Transformation of a Gaussian convolution
mask from floating point to integer coefficients.

streaming buffers for pipelining. Such a pipelined structural
description has to be inferred from the linear execution order of
kernels. Hereafter, kernel implementations need appropriate
placement of Vivado HLS pragmas depending on the desired
target optimization.

4. TRANSFORMING MASKS
Mask coefficients of a convolution f , where its result remains

in the same range as the input, can be described in two ways:
First by multiplying with integer values followed by a division
step for normalizing to the original range, or second by providing
floating point coefficients, which in total yield exactly 1. On
GPUs, the latter is the preferred choice, as issuing integers
or floating points instructions makes no difference in terms of
latency. Since the final normalization step at the end is avoided,
it is even more beneficial to use floating point coefficients.
Therefore, the DSL framework follows this approach.

On FPGAs however, the multiplication with integer coef-
ficients and the normalization step has a reduced impact on
resource requirements. Ideally the whole convolution can be
covered by simple shift operations.

As the HIPAcc framework does not support the first approach,
it is favorable to transform given floating point coefficients to
integer values. An example for transforming a simple Gaussian
mask is provided in Figure 5. For the transformation, certain
constraints need to be met. The mask size must be constant
and the coefficients must be known beforehand at compile time.
Mask transformation can only be applied if the condition in
Equation (1) holds, which states that every coefficient ci scaled
by the normalization factor N results in a natural number (with
respect to a small error ε, which can be defined at compile
time),

∀ci ∈ C,∃n ∈ N0 : N · ci ± ε = n (1)

where N is defined as the inverse of the smallest coefficient
N = 1/minci∈C{ci}.
The transformation of every floating point coefficient ci to

its integer representative xi is done by scaling each coefficient
by the normalization factor and correct rounding, defined as
xi = ⌊N · ci + 0.5⌋.

It can be shown, given the constraint defined in Equation (1),
that the convolution is still valid. With respect to the granted
small error ε, results of both approaches are approximately
equal, depicted in Equation (2).∑

ci∈C

ci · di ≈
∑

ci∈C xi · di
N

(2)
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As those results are not exact, they might not be suitable
for every algorithm or use case. Therefore, this feature can be
controlled by a compiler switch.

5. STREAMING PIPELINE
High-level programs given in HIPAcc DSL code process image

filters buffer-wise. Each kernel reads from and writes to buffers
sequentially, running one after another with buffers serving as
synchronization points (so called host barriers). Buffers can
be read and written, copied, reused, or allocated only for the
purpose of storing intermediate data.
Throughout this section, we will demonstrate our method

using the Harris corner detector [4], depicted in Figure 6. This
filter consists of a pipeline of kernels, implemented as point
operators and local operators, which are described in great
detail in Section 7.2. Although, every kernel writes to its own
buffer, in total only four buffers are necessary by applying smart
reuse of existing buffers containing out-dated intermediate data.

This buffered concept is fundamentally different from stream-
ing data through kernels, processing a computational step
as soon as all input dependencies are available. Kernels are
therefore interconnected with each other using stream objects
implementing First In First Out (FIFO) semantics. Such a
streaming concept requires a structural description, resolving di-
rect data dependencies unconstrained from the exact sequential
ordering of kernel executions.
We can transform the buffer-wise execution model into a

structural description suitable for streamed pipelining by ana-
lyzing the DSL host code, replacing memory transfers by stream
objects, and generating appropriate kernel code. Vivado HLS
can then be instructed to run all kernels in parallel, as shown
in Figure 7, which can deliver a significantly shorter processing
time. We first introduce how the structural description is
transformed from a given host code and then give insight into
device code generation.

5.1 Host Code Analysis
The host code is translated into an AST representation that is

traversed by HIPAcc. During this traversal process, we track the
use of buffer allocations, memory transfers and kernel executions
by detecting compiler-known classes. For each kernel, the direct
buffer dependencies are analyzed and fed into a dependency
graph.

Given this graph, we can build up our internal representation,
a simplified AST-like structure based on a bipartite graph
consisting of two vertex types: Space representing buffers and
process marking kernel executions. By traversing the kernel
executions in the sequential order, in which they are specified,
writes to buffers are transferred to the internal representation in
Static Single Assignment (SSA) manner. Hereby, reused buffers
(indicated by colors in Figure 6) will form new space vertices in
the graph. Furthermore, when the inputs of multiple kernels
depend on the same buffer and the same temporal instance
of intermediate data (e. g., dx in Figure 6), it is required to
replace these dependencies by a process for splitting the data,

dx

dy

sxy

sy

gxy

gy

hcinput output

sx gx

Figure 8: Streaming pipeline of Vivado kernels for
the Harris corner detector. Diamond shapes represent
kernels for splitting data of a single stream object into
multiple stream objects.

followed by multiple spaces, one for each kernel. This way, it is
guaranteed that streaming data later on will be copied before
handing it over to the next computation steps.

From our internal representation, we can infer the structural
description for the streaming pipeline shown in Figure 8. The
graph is linearized for code generation by traversing backwards
through the graph in Depth-First Search (DFS), originating
from the output spaces. Herby, parts of the graph that are not
contributing to the output will be pruned. For code generation,
every process vertex is translated to a kernel execution and
every space vertex marks the insertion of a unique Vivado HLS
stream object. The resulting code embodies the structural
description of the filter, which is written to a file serving as
entry function.

5.2 Device Code Generation
For generating device code, an AST is extracted and ex-

tended from the DSL’s kernel description. Additional nodes are
added to fulfill the requirements of the target language such as
applying index calculations and ROI index shifts. Depending on
optimizations specified by compiler options, vast portions of the
extracted AST are modified and replicated. For example when
enabling the use of texture or local on-chip memory on GPUs,
the appropriate language constructs must be inserted. Further
optimizations like thread-coarsening (similar to partial loop
unrolling), where multiple executions of the same kernel are
merged into a single one, are applied by cloning the extracted
AST and inserting it multiple times with slightly adjusted
memory access indices. The resulting AST is transformed back
to source code by utilizing Clang’s pretty printer and written
to separate files for each kernel. These files will be included
(CUDA) or loaded (OpenCL) by the rewritten host code file.

For Vivado HLS, we needed to introduce some additional
constraints. As described earlier, masks must be constant, not
only for mask transformation, but also for constant propagation3,
which we enforce for FPGA targets. Further constraints are that
image dimensions must be known beforehand at compile time,
in order to process it by Vivado HLS synthesis right away. The
resulting C++ code is based on a highly optimized library for
image processing, as proposed in [9], and is still human-readable.
Globally affecting parameters (such as image dimensions) are
defined at a single central spot, so that those parameters can
be conveniently altered for further syntheses without rerunning
the HIPAcc compiler. Similar to HIPAcc’s other targets, separate
files are created for each kernel. These files will be included by
the entry function, which already embeds all executions in a
structural description, described in the previous section. Kernel
optimizations applied for device code are explained in the next
section.

3Replacing memory loads of constant values by inserting the
numerical literals.
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5.3 Parallelization and Design Optimization
Although the possibility to use a C-based language for design

entry lowers the hurdle for acceptance of a HLS framework,
algorithms stated in such a language are inherently sequential
and must be parallelized and optimized in order to efficiently
use the FPGAs resources. As opposed to the world of High-
Performance Computing (HPC), where the fastest processing
speed is paramount, developing hardware accelerators may be
subject to several contrasting design goals. Of course, high
throughput and short clock periods are important achievements,
but often it is also necessary to comply with a certain resource
budget. A central element of Vivado HLS for this task are the
synthesis directives, which allow to specify how the input design
is to be parallelized and optimized.

5.3.1 Placing Vivado Synthesis Directives
Synthesis directives in Vivado HLS can either be inserted

in the code directly as pragmas, or collected in a script file
which is applied during synthesis. Here, we use both approaches.
Directives, which transform the sequential specification into a
typical parallel hardware structure, such as unrolling a for-loop
to model a shift-register, or which optimize hierarchical struc-
tures, for example inlining calls to small functions, are rarely
changed and are thus placed directly in the code as pragmas.
Other directives, we frequently use for parallelization and opti-
mization, such as pipelining and specifying the size of FIFOs
to interconnect a streaming pipeline can be used for design
space exploration and to enforce a certain optimization strategy.
Searching and altering the code to adapt these directives may
become inconvenient for large designs. Therefore, we provide
these directives in a script file, so that they can be readily
changed.

5.3.2 Optimizing Loop Counter Variables
Software developers often tend to use the convenient int data

type to specify loop counter variables. For image processing, the
image dimensions seldom require the full range of a 32-bit two’s
complement. Moreover, using more bits for a variable than
required causes undesired excessive use of resources and may
degrade the achievable maximum clock frequency, especially if
the variable must often be compared to another. In Vivado HLS,
appropriate bit-widths can be explicitly specified if the range
of the variable is known during the code generation. Another
possibility is to let the synthesis tool automatically infer the
required bit-width by inserting assertions on the range of the
variable, similar to the range definitions for the integer data
type in VHDL. We apply assertions to loop counter variables in
our approach, so that bit widths do not need to be explicitly
adapted if image dimensions change between code generation
and synthesis. In this way, we ensure that the design always
uses an optimal binary representation for loop variables, reduce
the amount of required resources and achieve shorter critical
paths for logical operations on such variables.
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Figure 9: Packing of vector types into Vivado streams.
This example shows an RGBA pixel, the channels are
packed together into a single stream. Although the
channels must be processed individually, a common
stream and line buffer can be used.

5.3.3 Mapping Vector Types
Since HIPAcc was developed for GPUs, it supports numerous

vector types, which are crucial for performance on specific
GPU architectures. Besides performance concerns tackled by
explicit vectorization, these types are in particular well-suited
for expressing computations on common formats of image
processing in a natural way.

To support vector types for the Vivado HLS target, basically
two approaches are available: (a) treat all vector elements
separately, resulting in multiple line buffers, multiple windows,
and multiple streams for each local operator; or (b) pack all
vector elements into a single integer of the same bit-width as the
whole vector, resulting in only a single stream for each operator,
depicted in Figure 9. The first approach is realized by the Open
Source Computer Vision (OpenCV) implementation provided
with Vivado HLS 2014.1. The latter is followed by our code
generation, because this might reduce the overall consumption
of memory resources.

Given vectorized DSL code does not need to be modified. We
have implemented vector types for Vivado HLS as C structures
and realize computations by operator overloading. Reads and
writes to DSL Images, which will be mapped to stream objects,
are replaced by conversion functions, either extracting the vector
types from packed stream elements or packing vector types into
stream elements. Inter-kernel computations, i. e., operations on
local variables, are described as vector operations in DSL code
already and are therefore covered by overloaded operators.

5.3.4 Delaying Point Operators
As explained earlier, obeying causality when applying local

operators to streaming data causes an increased group delay. If
point operators are used in streaming pipelines before a local
operator, the production rate of the point operator is higher
than the consumption rate of the local operator. One way to
address this issue is to insert an appropriately sized stream
buffer between the two operators. Alternatively, a delay can be
enforced on the point operator to equalize consumption and
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production rates. The generated code uses the latter approach
in order to save memory resources.

5.3.5 Unified Iteration Space
As discussed earlier, processing a local operator with window

size w in a streaming data context increases the group delay.
As a consequence, the iteration space of the algorithm must
be enlarged and shifted by t = ⌊w/2⌋ in each dimension.
Figure 10 illustrates an example using a local operator with a
window of size 3× 3. The original iteration space, ranging from
[0, X − 1], [0, Y − 1] must be enlarged by t = ⌊3/2⌋ = 1 to also
include the output domain. In order to compute the filtered
domain, the computation domain must be shifted by the same
parameter t = 1 in each dimension. Using several local operators
in a streaming pipeline may cause buffering problems if a larger
window size follows a smaller window size, for example, data
is first processed by a 3× 3 window, then by a 5× 5 window,
since the smaller local operator has higher production rate
than the second. The problem can be solved in two different
ways by (a) introducing sufficiently sized FIFO buffers or by
(b) unifying the iteration space. In this approach, we use the
latter solution, since it reduces the amount of required on-chip
memory resources. For this, we determine the maximum group
delay tmax and adjust the iteration spaces of all the local and
point operators in the pipeline according to the maximum delay
tmax. The iteration space of the computation domain, however,
must still be defined using the local group delay tlocal.

6. TEST BENCH GENERATION
When developing architectures and FPGA layouts, it is

of great importance to cover sources of errors by testing, at
best starting in early design phases. A solution to achieve
effortless testing is automatic test bench generation from a
high abstraction level. By applying such techniques, testing
is more flexible, can be accomplished much more efficiently
than on RTL, and requires less coding effort than, for example,
in VHDL. Our approach allows to write DSL code from that
HIPAcc can derive a test bench that can be used by Vivado HLS.

In order to accomplish testing, HIPAcc can utilize the provided
DSL host code, which is embedded into C++ and thereby
already surrounded by functioning program code. The host
code’s AST will be traversed by HIPAcc using Clang’s Rewriter
engine. For each node that is related to the compiler-known
classes, HIPAcc rewrites the source code location by inserting
appropriate runtime calls. On FPGAs for instance, assignments
between pointers and Images will be replaced by runtime calls
for initially filling array data into Vivado stream objects. Similar
replacements are applied to all other occurrences of compiler-
known classes within the input code.

The resulting rewritten host code is still very similar4 to
the original input and the surrounding program code is left
untouched. Therefore, if the designer has specified testing
routines in the C++ program that verifies the results computed
by DSL code, the rewritten program can serve as a test bench
without further modification. The same applies to GPU targets,
which further emphasizes the consistency of our approach to
cover fundamentally different targets from one and the same
code base.

7. EXPERIMENTAL RESULTS
We evaluate our results on several different hardware target

platforms. All hardware targets are compared in terms of
performance and energy efficiency. Our implementations are
generated by HIPAcc for each target, stemming from the same
code base. Additionally, we analyze our synthesis results in
contrast to an OpenCV implementation provided by Xilinx.

7.1 Evaluation Environment
First, we briefly describe our environment by providing

detailed information about the architectures and libraries we
take into account for evaluation.

ARM Mali-T604 is an embedded GPGPU integrated into
the Samsung Exynos 5 Dual Multi-Processor System-on-Chip
(MPSoC). The GPU is featuring four 128-bit SIMD units
per core. In total, it has four cores available, resulting in 64
SIMD lanes for floating point operations, running at 533MHz.
Counting Fused Multiply-Add (FMA) as two operations, its the-
oretical peak performance caps at approximately 68.22GFLOPs.
Besides 2GB of DDR3 RAM, which is shared among the CPUs
and the GPU, it also contains 256KB of L2 cache. It further
supports utilizing texture memory from OpenCL restricted to
the RGBA format, forcing the use of integer vectors containing
four elements. Local on-chip memory is not available.

Nvidia Tesla K20 is a discrete GPGPU solely for the pur-
pose of computing. It contains 2496 scalar compute cores, dis-
tributed among 13 multi-processors, each running at 705MHz.
This results in approximately 3520GFLOPs, doubled as usual,
because of FMA. Besides 5GB of GDDR5 RAM, also includes
L1 and L2 caches as well as up to 48KB local on-chip memory.

Xilinx Zynq 7045 is a System on Chip (SoC), which tightly
integrates an ARM Cortex-A9 dual core CPU and a Kintex
FPGA, using an ARM AMBA interconnect. The included
FPGA can be considered a mid-range device, offering 350K
logic cells, comprised of 218,600 Lookup Tables (LUTs), 437,200
flip-flops, 2,180 Kb of on-chip memory, and 900 DSP slices.
Furthermore, the device includes a Gen2 hardcore PCI Express
block and up to 16 high-speed serial GTX transceivers, each
capable of transmitting at 12.5 Gb/s.

Xilinx OpenCV is a Vivado HLS-specific video processing
library, similar to the popular computer vision framework.
Legacy code for OpenCV can be implemented by Vivado HLS,
requiring only minor modifications. Although, the library is
designed to be used exclusively with the AXI4 streaming inter-
faces, we have extended it to also support standard streaming
interconnects. In its current state (Vivado 2014.1), only a
subset of OpenCV functions have been implemented at different
optimization levels. Therefore, the here presented performance
applies only to this specific version of Vivado HLS and might
be subject to improve in future releases.

4e. g., Image names are maintained, only given a prefix when
converting to streams



Table 1: PPnR results for the Laplacian operator and Harris corner detector implementations comparing the
here proposed approach to OpenCV (as of Vivado HLS 2014.1).

HIPAcc OpenCV 2014.1

II LAT SLCE LUT FF B DSP F[MHz] P [mW] II LAT SLCE LUT FF B DSP F[MHz] P [W]

LPHV 3x3 1 1050638 141 288 521 2 0 349.9 232 1 1092846 1659 3515 8772 12 75 258.3 260
LPD 3x3 1 1050641 226 398 1034 2 0 341.1 232 1 1092846 1717 3470 8768 12 75 247.2 258
LP 5x5 1 1052768 3917 4521 23795 4 200 220.1 247 1 1098218 2171 5316 9076 10 103 201.7 268

HC 3x3 1 1063233 9349 23331 31102 8 254 239.4 498 - - - - - - - - -
HC 3x3 2 2101442 6097 17129 21138 8 154 207.9 552 2 2349003 6782 20037 26259 12 84 224.1 428

7.2 Algorithms
For the evaluation, we consider three typical image processing

algorithms: an edge detector based on the Laplacian operator,
the Harris corner detector [4], and the computation of opti-
cal flow using the census transform [11]. Those algorithms
are of high relevance for richer imaging applications, such as
augmented reality or driver assistance systems in the auto-
motive sector. They all embody a high degree of parallelism
and are equally well suited for every of our considered target
architectures. Although these algorithms are well known, their
implementation details may differ significantly, thus we briefly
clarify the algorithm specifics used for our evaluation.

Laplace The Laplacian (LP) filter is based on a local operator,
as already described in Section 2. Depending on the mask variant
used, either horizontal and vertical edges or both including
diagonal edges can be detected. In our results, we denote the
first variant as LPHV 3 × 3 and the second as LPD 3 × 3.
Additionally, we evaluated a third variant LP 5× 5, based on a
larger window size, also detecting diagonal edges.

Harris Corner (HC) was first introduced by Harris and Stephens
[4]. It consists of a complex image pipeline depicted in Figure 6.
After building up the horizontal and vertical derivatives (dx,
dy), the results are squared and multiplied (sx, sy, sxy), and
processed by Gaussian blurs (gx, gy, gxy). The last step (hc)
computes the determinant and trace, which is used to detect
threshold exceedances.

Optical Flow (OF) issues a Gaussian blur and computes
signatures for two input images using the census transform.
Therefore, for each image two kernels need to be processed.
A third kernel performs a block compare of these signatures
using a 15× 15 window in order to extract vectors describing
the optical flow. Regarding continuing streams of images (e. g.,
videos), for GPU targets the first image’s signatures can be
reused. Hereby, it is only necessary to process the second image
and to reperform the block compare, resulting in the execution
of 3 kernels per iteration. Whereas on FPGAs, the signatures
for both images always have to be computed, resulting in the
execution of 5 kernels per iteration. For fair comparison, we
were considering this fact when evaluating our throughput
results.

For the evaluation, we have used an 8-bit integer data types
and images of size 1024× 1024. The algorithms we synthesized
in Vivado HLS with high effort settings for scheduling and
binding. Post-Place and Route (PPnR) resource requirements
were obtained by implementing the generated Verilog code in
Vivado 2014.1. Power requirements were assessed by performing
a timing simulation on the post-route simulation netlists and
evaluation of the switching activity in Vivado.

7.3 Comparison to OpenCV
To evaluate the proposed code generation techniques, we

have generated code for the algorithms discussed in Section 7.2
in HIPAcc. As of release 2014.1, Vivado HLS provides the Harris
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Figure 11: Amount of used FPGA resources by auto-
matic synthesis. The suffixes H and O denote HIPAcc

and OpenCV, respectively.

corner detector as an OpenCV implementation. Although no ex-
plicit implementation of the Laplacian operator is provided, the
video processing library from Xilinx implements the 2D_Filter
class from OpenCV, which can be used for 2D convolution with
predefined coefficients. The optical flow is omitted, since the
Xilinx OpenCV library does not contain an implementation for
it, yet. The evaluation results, including achieved minimum
initiation interval (II) and latency (LAT) (total number of
clock cycles), required slices (SLCE), lookup tables (LUT),
flip-flops (FF), block RAMs (B), and DSP slices (DSP) are
listed in Table 1. Moreover, the table also specifies the maxi-
mum achievable clock frequency (F[MHz]) and simulated power
requirements (P[mW]).
Both OpenCV and HIPAcc can deliver implementations for

the Laplacian operator at Initiation Interval (II)=1. For the
Harris corner detector, the synthesis of the OpenCV implemen-
tation reported loop-carried dependencies and can thus only
achieve an II of 2. To be able to compare the results from
HIPAcc, we also enforced an II of 2 in a second evaluation. A
comparison of resource requirements and clock frequencies is
shown in Figure 11. As it can be seen, the highly optimized
HIPAcc implementations can achieve significantly higher clock
frequencies, which also enables a maximum clock frequency of
close to 350 MHz for the 3× 3 Laplacian operators. The results
of the Harris corner detector compare the II=2 implementa-
tions. Here, it can be seen that despite of achieving a lower
clock frequency, the HIPAcc solution uses more of the available
DSP slices, which in turn causes less LUTs and FFs for the
arithmetic operators. We have also compared the achievable
throughput between HIPAcc and OpenCV, which is shown in
Figure 12. For all algorithms, HIPAcc can generate solutions with
a lower latency. In combination with a higher clock frequency
and a single initiation interval, the throughput of the Harris
corner detector can be considerably increased.
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Figure 13: Amount of used resources for the optical
flow on various FPGA types.

7.4 Evaluation of Different FPGA Types
Especially for close-to-sensor image preprocessing, it is im-

portant to generate efficient high-performance accelerators. To
evaluate whether the solutions generated by HIPAcc can also be
implemented on low-end FPGAs and SoCs, we have synthesized
the optical flow algorithm for various FPGA types of the 7
series family from Xilinx. The PPnR results are presented in
Table 2. Figure 13 shows a graphical representation of the

Table 2: PPnR results for the optical flow implemen-
tation comparing different types of Xilinx FPGAs

FPGA SLCE LUT FF BRAM F[MHz] P [W]

XC7A35T 4417 11123 18540 31 187.7 0.155
XC7A200T 4351 15526 8997 31 203.2 0.213

XC7K70T 3521 12856 7677 31 204.7 0.247

XC7Z7010 4352 18607 11226 31 166.9 0.211
XC7Z7045 5669 11321 18587 31 204.7 0.470

implementation results. The Artix A35T, the Kintex K70T and
the Zynq Z7010 are the smallest devices available for the three
families. As the reconfigurable logic of the small Zynq is based
on the Artix architecture, the resource requirements and the
performance are roughly equal to that of the A35T. As well
as the mid-range Zynq 7045, the K70T can easily handle the
optical flow algorithm’s resource requirements and achieve the
requested clock performance of 200 MHz.

7.5 FPGA vs. Embedded GPU Implementation
One of the benefits of using a DSL for HLS is to have a

target-independent high-level description at hand, which can

Table 3: Comparison of execution times on ARM
Mali-T604, Xilinx Zynq 7045, and Nvidia Tesla K20.
Time in ms for an image of size 1024× 1024.

Mali-T604 Zynq 7045 Tesla K20

LPHV 3× 3 9.96 3.00 0.10
LPD 3× 3 16.09 3.08 0.16
LP 5× 5 45.47 4.78 0.38
HC 83.65 4.38 0.91
OF 2284.73 5.19 2.21

Table 4: Comparison of throughput and energy con-
sumption for the ARM Mali-T604, Xilinx Zynq 7045,
and Nvidia Tesla K20.

Mali-T604 Zynq 7045 Tesla K20

TP [fps] E [fpW] TP [fps] E [fpW] TP [fps] E [fpW]
LPHV 3x3 100.4 41.8 333.3 1423.1 10000.0 74.1
LPD 3x3 62.2 25.9 324.7 1387.6 6250.0 46.3
LP 5x5 22.0 9.2 209.2 846.9 2631.6 19.5
HC 11.9 4.9 228.3 458.5 1098.9 8.1
OF 0.4 0.2 192.5 409.6 452.5 3.4

generate code for several different hardware targets from the
same code base. In this section, we will analyze the above
presented algorithms for Mali-T604, Zynq 7045, and Tesla K20
in terms of performance and energy consumption. Performance
results are summarized in Table 3. An efficient configuration for
the GPU implementations was found using HIPAcc’s exploration
feature. Except for the optical flow, the Tesla K20 can exceed
the performance of the embedded Mali GPU by a factor of
approximately 100. The window size of 15×15 used in the optical
flow leads to devastating results for Mali, presumingly because
of missing L1 cache and on-chip memory. Execution times for
both GPUs increase with the window size and kernel complexity,
clearly decelerated by the number of memory loads. For the
FPGA, the impact of larger window sizes is by far less noticeable.
We further provide a comparison of the throughput in Figure 14
and energy consumption in Table 4. Power consumption of
the GPUs can be estimated by considering about 60% of the
reported peak power values (2.28W for the ARM Mali and
about 135W for the Nvidia Tesla). The FPGA provides the
most energy efficient solution. Even though achievable frame
rate per watt decimates notably faster than throughput, this
effect is much more distinctive on GPUs, leaving FPGAs clearly
as the architecture of choice in particular for more complex
algorithms.

We attribute the lower energy efficiency of the Mali compared
to Tesla to an inefficient code mapping by the OpenCL compiler.
In fact, our implementation of the Laplacian filter uses four
element wide vector types with a size of 32 bit. Since Mali
contains 128-bit SIMD units, in theory a speedup of 4× at
unchanged energy consumption can be expected for optimal
occupation by implicit vectorization. Currently, HIPAcc does not
support implicit vectorization. The Harris corner execution
times are negatively influenced by a similar issue. However,
the performance results of Tesla GPUs are not affected by
this problem and therefore outperform Mali in terms of energy
efficiency.

8. RELATED WORK
High-level synthesis for reconfigurable logic has received a

lot of attention over the past decades. Calypto’s Catapult
or the Impulse CoDeveloper C-to-FPGA Tools from Impulse
Accelerated Technologies, as well as ROCCC [13] can be con-
sidered as general purpose frameworks for HLS and do not
offer domain-specific knowledge for image processing. The
smart buffer concept of ROCCC, is similar to our buffering
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approach, however, it does not support the construction of
processing pipelines and also contains no further extensions,
specific to image processing. For image and signal processing, it
is often a challenge to bring together different areas of expertise,
for instance algorithm design and hardware implementation.
HLS frameworks sometimes include specific libraries to provide
elemental architecture constructs and filtering implementations,
as for example, the partial port of the OpenCV library [1]
for Vivado HLS from Xilinx. MathWorks’ HDL-coder and
Synopsys’ Synphony C Compiler are specific frameworks for
generating hardware implementations from the Matlab/Simulink
environment. Extending such libraries might become quite a
burden and lowers portability. Furthermore, libraries are often
restricted to a certain language and do not provide the same
degree of freedom as a DSL. DSLs offer the advantage that do-
main and architecture knowledge are available for parallelization
and the compilation flow. SPIRAL [8], for example, is a widely
recognized framework for the generation of hard- and software
implementations of digital signal processing algorithms (linear
transformations, such as FIR filtering, FFT, and DCT) using a
domain-specific language. Another considerable approach was
proposed by George et al. [3] using lightweight modular staging
and LegUp [2] as a back end for DSL-based generation of data
paths. In the image processing domain, PARO [10] is a HLS
environment that provides domain-specific augmentations, such
as, border treatment and reductions (e. g., median filtering)—
however, PARO generates only dedicated hardware accelerators
but does not support multi- and many-core architectures. An-
other approach called Darkroom—was developed in parallel
to ours—that can emit parallel code for multi-core systems as
well as generate hardware pipelines was proposed by Hegarty
et al. [5]. However, Darkroom does not offer advanced language
constructs as for instance border treatment.

9. CONCLUSIONS
In this work, we have demonstrated how the DSL-based

framework HIPAcc can be extended to also include FPGAs as
an additional hardware target by generating highly optimized
code as design entry for the high-level synthesis framework
Vivado HLS. In comparison to hand-coded C++ implementa-
tions for local operators in Vivado HLS, which might easily
exceed 200 lines of code, specifying such an algorithm in the
C++ embedded DSL only requires about a quarter, thereby
performing numerous optimizations and eliminating coding
errors. The proposed approach is evaluated in contrast to Xilinx
OpenCV and can deliver significantly decreased resource usage

and dramatically increased performance. As HIPAcc also includes
GPUs as hardware targets, we have compared the proposed
FPGA approach to highly optimized GPU implementations,
generated from the same code base. The assessment exposes
the benefits of using a heterogeneous framework for algorithm
development and can easily identify a suitable hardware target
for efficient implementation.
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