Automatic Optimization of Hardware Accelerators for Image Processing

Oliver Reiche, Konrad Häublein, Marc Reichenbach, Frank Hannig, Jürgen Teich, and Dietmar Fey
Department of Computer Science
Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
Email: {oliver.reiche, konrad.haeublein, marc.reichenbach, hannig, teich, dietmar.fey}@cs.fau.de

Abstract—In the domain of image processing, often real-time constraints are required. In particular, in safety-critical applications, such as X-ray computed tomography in medical imaging or advanced driver assistance systems in the automotive domain, timing is of utmost importance. A common approach to maintain real-time capabilities of compute-intensive applications is to off-load those computations to dedicated accelerator hardware, such as Field Programmable Gate Arrays (FPGAs). Programming such architectures is a challenging task, with respect to the typical FPGA-specific design criteria: Achievable overall algorithm latency and resource usage of FPGA primitives (BRAM, FF, LUT, and DSP). High-Level Synthesis (HLS) dramatically simplifies this task by enabling the description of algorithms in well-known higher languages (C/C++) and its automatic synthesis that can be accomplished by HLS tools. However, algorithm developers still need expert knowledge about the target architecture, in order to achieve satisfying results. Therefore, in previous work, we have shown that elevating the description of image algorithms to an even higher abstraction level, by using a Domain-Specific Language (DSL), can significantly cut down the complexity for designing such algorithms for FPGAs. To give the developer even more control over the common trade-off, latency vs. resource usage, we will present an automatic optimization process where these criteria are analyzed and fed back to the DSL compiler, in order to generate code that is closer to the desired design specifications. Finally, we generate code for stereo block matching algorithms and compare it with handwritten implementations to quantify the quality of our results.

I. INTRODUCTION AND RELATED WORK

Real-time image processing is an important task in many application domains. For example autonomous driving or process control need embedded devices for their calculation devices to meet area and energy constraints. Therefore, the traditional way, that an image sensor just captures image data and transfers it to a processing system is not feasible. Rather, the data has to be processed where the information is acquired, which means in or near the image sensor. This leads to a new class of devices, called smart cameras. IEEE describes such smart sensor as follows “A transducer that provides functions beyond those necessary for generating a correct representation of a sensed or controlled quantity. This functionality typically implies the integration of the transducer into applications in a networked environment.” [1]

One of the first smart cameras was developed by the group of Wolf [2]. They used a Trimedia CPU for image preprocessing tasks. To achieve higher frame rates, they proposed to heavily use SIMD\(^1\) instructions. Other approaches, described in [3], use Digital Signal Processors (DSPs) to achieve a very high computing power. To further increase performance, they build a scalable system that consists of up to 10 DSPs for parallel processing.

\(^1\)SIMD: Single Instruction, Multiple Data, according to M. Flynn’s taxonomy

Even more customized architectures have been developed. For example, in [4], a dedicated integrated circuit was developed to speed up image processing within smart cameras. A good survey of smart camera approaches is provided in [5].

With the emerging technology of FPGAs, these devices have been quickly used for the design of smart camera systems. One big advantage is the number of parallel processing units, which can be instantiated in FPGAs as 1D or 2D arrays, since image processing algorithms are in general well parallelizable [6]. Therefore many new architectures were created on the basis of FPGAs in the past years. While the individual components (e.g., DSP, CPU, FPGA) are well known, a complete design flow how to use these architectures, especially in the domain of image processing is still an open question. Also the combination of such devices to utilize the architectural peculiarities, as described in [7], known as heterogeneous systems, is not completely solved now.

It is well known that application-specific hard- and software will give the highest performance and/or lowest resource utilization. On the other hand, application-specific development is a time consuming and error prone task. Therefore, other approaches were created to describe image processing algorithms in a more abstract way and to perform an automatic derivation.

Schmid et al. proposed in [8] a pipeline design for range image preprocessing on FPGAs. Here, several filters for compensating sensor deficiencies (e.g., noise and pixel defects) were designed by using the HLS framework PARO [9] and evaluated in an experimental setup, consisting of a Microsoft Kinect and Xilinx Virtex-6 LX240T FPGA. Whereas we consider stereo cameras, the authors in [8] mainly focus on different sensor technologies, such as structured light and Time-of-Flight (ToF).

Another approach is taken by the HIPA\(^{CC}\) framework [10] to generate code for FPGA HLS. HIPA\(^{CC}\) is a publicly available...
II. BLOCK MATCHING FOR STEREO CAMERAS

One of the biggest challenges in stereo vision is finding correspondences in pairs of stereo images. This way, the distances of objects in a captured scene can be calculated and saved in a depth or disparity map. Along many techniques solving this issue, stereo block matching is widely used, due to its straightforward procedure. In stereo block matching, one image must be defined as reference image, while the other gets determined as target image. It is assumed that each object within a local region of the reference image can be found along the common epipolar line in the target as illustrated in Figure 2.

A local region is defined as a squared block or window with a static pixel range (e.g., 3×3). The search for correspondences gets further limited by setting of the maximum disparity, illustrated by rectangular block in the target image of Figure 2. Evaluating how similar the reference block is to a sub window block of target image is done by a cost function, which ranks each compared sub window mask. Common cost functions are Sum of Absolute Differences (SAD) and the Census difference, which are explained in Figure 3.

Lower ranked sub window blocks indicate a closer match to the reference block. Therefore, after each sub window of the target window was compared, the lowest cost function value must be found. For the closest match the found distance d correlates with the distance of the viewed object. High values of d indicate low distance from the image view to the object. This entire process needs to be repeated for every pixel of the reference image.

A local region is defined as a squared block or window with a static pixel range (e.g., 3×3). The search for correspondences gets further limited by setting of the maximum disparity, illustrated by rectangular block in the target image of Figure 2. Evaluating how similar the reference block is to a sub window block of target image is done by a cost function, which ranks each compared sub window mask. Common cost functions are Sum of Absolute Differences (SAD) and the Census difference, which are explained in Figure 3.

Lower ranked sub window blocks indicate a closer match to the reference block. Therefore, after each sub window of the target window was compared, the lowest cost function value must be found. For the closest match the found distance d correlates with the distance of the viewed object. High values of d indicate low distance from the image view to the object. This entire process needs to be repeated for every pixel of the reference image.

A. Heterogeneous Image Processing Acceleration Framework

The HIPA++ framework consists of a DSL for image processing that is embedded into C++ and a source-to-source compiler. Exploiting the compiler, image filter descriptions written in DSL code can be translated into multiple target languages such as Compute Unified Device Architecture (CUDA), Open Computing Language (OpenCL), Renderscript as used on Android, and C++ code that can be further processed by Vivado HLS [12]. In the following, we will use the Gaussian blur filter as an example to briefly describe properties of the DSL and show how code generation is accomplished.

1) Domain-Specific Language: Embedded DSL code is written by using C++ template classes provided by the HIPA++ framework. The most essential C++ template classes for writing 2D image processing DSL codes are: (a) an Image, which represents the data storage for pixel values; (b) an iteration space defining the region of interest (ROI) for operating on the output image; (c) an Accessor defining the ROI of the input image and enabling filtering modes (e.g., nearest neighbor, bilinear interpolation, etc.) on mismatch of input and output region sizes; (d) a Kernel specifying the compute function executed by multiple threads, each spawned for a single iteration space point; (e) a Domain, which defines the iteration space of a sliding window within each kernel; and (f) a Mask, which is a more specific version of the Domain, additionally providing filter coefficients for that window. Image accesses within the kernel description are accomplished by providing relative coordinates. To avoid out-of-bound accesses, kernels can further be instructed to implement a certain boundary handling (e.g., clamp, repeat) by specifying an instance of the class BoundaryCondition.

To describe the execution of a Gaussian blur filter, we need to define a Mask and load the Gaussian coefficients, defined as
where kernels are issued one by one, must be transformed into
for pipelining. In particular, the buffer-wise execution model,
be translated in a more suitable version (integer arithmetic) for
as a target for code generation involves numerous challenges
reduce() constructs for local operators to handle reductions (convolve()
iteration. Besides
coefficients; (b) the reduction type; and (c) a C
create an input and an output image for storing pixel data and
constants, see Listing 1 (lines 6–10). It is further necessary to
create an input and output image for storing pixel data and
loading initial image data into the input image (lines 11–15).
The input image is bound to an Accessor with enabled boundary handling mode clamping (lines 18–19). After defining the iteration
space, the kernel can be instantiated (line 25) and executed (line 28).

The actual Kernel is implemented by deriving from the framework’s provided Kernel base class, inheriting a kernel() method. Within that method the actual kernel code is provided, see Listing 2 (lines 4–7). Because the Gaussian blur filter is a
local operator that is performing standard convolution, the kernel can be described using the convolve() method. This method
takes three arguments: (a) the mask for defining window size and coefficients; (b) the reduction type; and (c) a C++ lambda function
describing the computational steps that should be applied in each iteration. Besides convolve(), HIPACc offers similar language constructs for local operators to handle reductions (reduce() and iterations (iterate()) in general.

2) Generating Code for Vivado HLS: Considering Vivado HLS
as a target for code generation involves numerous challenges
to overcome. Convolution masks provided in DSL code must
be translated in a more suitable version (integer arithmetic) for
FPGAs and hardware accelerators. The same applies to DSL
vector types that need to be wrapped into integer streaming buffers for pipelining. In particular, the buffer-wise execution model,
where kernels are issued one by one, must be transformed into
streaming buffers for pipelining. Hereby, a pipelined structural
description is inferred from the linear execution order of kernels.
Furthermore, kernel implementations need appropriate placement of
Vivado HLS pragmas depending on the desired target optimization. This is mostly done by instantiating the right
building blocks, encapsulated in a library [14] that is shipped with
the generated code.

B. Optimization Feedback Loop

In FPGA designs, often more than just a single algorithm has
to be placed on one and the same FPGA. Block matching
for instance could benefit from a Gaussian blur preprocessing
step to increase the likelihood for positive matches, as well as
median filtering for postprocessing to eliminate salt and pepper noise. Therefore, often constraints can be defined, such as
a resource limitation, in order to ensure that all algorithms fit into
the available resources of an FPGA device.

Pragmas set by HIPACc influence decisively the synthesis results produced by Vivado HLS. Those are mostly affecting
the achievable Initiation Interval (II)\(^3\) and resource usage. The II
directly impacts the achievable throughput of the algorithm in
strong correlation with the clock frequency the synthesis was able
to cope with. In fact, the overall latency of an image algorithm
can be defined by: \#pixels \times \frac{\text{II}}{\text{clk. freq.}} + \text{the initial latency for filling the pipeline, which is negligible for larger image dimensions.}

To stay within a given resource budget or to ensure certain
timing constraints, in this work, we introduce an optimization feedback loop, which is exploiting the HIPACc compiler and
Vivado HLS. Hereby, synthesis results are analyzed and fed back
into the HIPACc compiler in order to generate a more suitable
version. That feedback loop primarily considers three optimization targets: II, clock frequency, which both essentially represent the
achievable throughput, and resource usage. For two of those
targets, an upper limit can be defined as constraint. The third
non-constrained target will serve as a variable parameter, which
is iteratively modified by the optimization loop. Early results
have shown that exploring different target II’s is not a practical
approach. For synthesis, always the lowest possible II should
be chosen. Otherwise the achievable gain in clock frequency is in
most cases not able to keep up with the increased II, which leads
to an overall throughput reduction.

The optimization feedback loop attempts to search a suitable
version in two phases, as illustrated in Algorithm 1. Initially, the
constraints need to be defined, as well as the target type for which
a variable parameter is evaluated. In the first phase (line 4–8), that
variable parameter is consecutively doubled until all constraints
are met. Hereby, the upper bound for the search interval of the
second phase is determined. In the second phase (line 9–18), the
actual optimization takes place. The search interval is explored
by applying the bisection method. Meaning in each iteration,
the interval center is chosen as pivot element and represents the
upper or lower interval boundary for the next iteration, depending
on whether or not the constraints have been met.

\(^3\)number of clock cycles a pipelined execution needs to produce an output value, when the pipeline has already been filled.
Algorithm 1: Optimization Feedback Loop

```
1: function OPTIMIZE(target, constraints)
2:   low ← DEFAULTLOW(target)
3:   high ← low
4:   repeat ▷ Phase 1: Find upper bound
5:     low ← 2×high
6:     GENERATECODE(target, high, constraints)
7:     RUNSYNTHESIS()
8:   until CONSTRAINTSMET(constraints)
9:   while low ≠ high do ▷ Phase 2: Search optimum
10:      current ← low+high/2
11:      GENERATECODE(target, current, constraints)
12:      RUNSYNTHESIS()
13:      if CONSTRAINTSMET(constraints) then
14:         high ← current
15:      else
16:         low ← current
17:      end if
18:   end while
19: end function
```

C. The Bit-Count Problem

During the comparison step within Census difference block matching, the Hamming distance needs to be evaluated. Counting bits within various data types can be accomplished fairly efficient in software with the Brian Kernighan Algorithm shown in Listing 3. The number of loop iterations exactly represents the number of set bits to count. As HIPAcc supports the use of standard C++, software developers might tend to implement bit counting using this algorithm. Unfortunately, Vivado HLS does not cope with variable loop boundaries and is not able to successfully analyze that the maximum number of iterations solely depends on the bit width of the given data type. As a consequence, unrolling can not be applied, pipelining fails, and no II can be determined.

```
1: int count = 0;
2: while (val)
3:   val &= val - 1;
4:   ++count;
5:}
```

Listing 3. Brian Kernighan Algorithm

Whenever falling back to standard C++ code, without enforcing the use of DSL constructs, efficient target-specific code generation might be dramatically limited. This also holds for the above example, which will produce non-pipelined synthesis results. However, implementing the same algorithm with DSL constructs, considering their limitations, forces the developer to introduce a fixed upper bound for the number of iterations. A possible implementation can be seen in Listing 4. Hereby, the early jump (line 3) is maintained for rather fortunate cases and code generation can be applied more tailored to target-specific Vivado HLS characteristics.

```
1: int count = 0;
2: iterate(sizeof(val)*8, [8] ()
3:   if (!val) break_iterate;
4:   val &= val - 1;
5:   ++count;
6: });
```

Listing 4. Brian Kernighan Algorithm in DSL Code

```
1: int count = 0;
2: for (int i = 0; i < sizeof(val)*8; ++i) {
3:     #pragma HLS loop_tripcount min = 0 max = sizeof(val)*8
4:     if (!val) break;
5:     val &= val - 1;
6:     ++count;
7: }
```

Listing 5. Generated Brian Kernighan Algorithm

IV. Evaluation and Results

Our results for the stereo matching algorithms have been evaluated on the Zynq platform. The algorithms have been implemented in DSL code, which could also be used to target completely different architectures, like GPUs, without any effort. The code used for synthesis by Vivado HLS was generated with HIPAcc. To evaluate the quality of the our results, we compare it to handwritten implementations. Furthermore, we will present the results we were able to obtain by applying the optimization feedback loop.

A. Experimental Environment

Xilinx Zynq 7100 is a System on Chip (SoC), which tightly integrates an ARM Cortex-A9 dual core CPU and a Kintex FPGA. The included FPGA offers 277,400 Lookup Tables (LUTs), 554,800 flip-flops, 3,020 kB of on-chip memory (BRAM), and 2,020 DSP slices.

Xilinx Vivado HLS is a High-Level Synthesis tool specifically targeting Xilinx FPGAs. It allows design entry in C/C++ or SystemC and delivers HDL code (VHDL, Verilog, and SystemC) for synthesizable IP cores. For our experiments we are using the most recent version Vivado HLS 2014.4.

1. Handwritten Implementation: In [15] stereo block matching has been realized as a generic VHDL template, which is scalable in several functional and structural parameters like image size, disparity and window block size. By utilizing special buffering techniques it was possible to implement it as streaming architecture, in order to have a direct interface to the image sensor for performing block matching in real time on HD images. For achieving high frame rates, the architecture has been pipelined. Since no specific IP core interfaces have been used, it is easy to port it to a different FPGA vendor or family and may also be base for an ASIC design. The cost functions are calculated by a Processing Element (PE). This common interface allows to switch between different cost functions easily. Depending on the designer constraints (FPGA resources, depth map accuracy) the architecture can be adapted. The minimum detection module MIN has been implemented as a pipelined binary tree. An overall architecture is shown in Figure 4. The images were taken from the Middlebury 2003 stereo datasets [16], which provide several scenes for benchmarking of stereo matching algorithms. The resulting depth maps show different matching qualities depending on the used cost function.
Vivado, in order to transform the buffer-wise execution model will be eliminated and replaced by stream objects provided by the HLS pragmas. The intermediate result (the binary vectors) are stored along the epipolar line. It compares the binary vectors computed in the previous step within that window and stores the position of the closest match. The intermediate result (the binary vectors) are stored in a temporary buffer. Through code generation, these buffers will be eliminated and replaced by stream objects provided by Vivado, in order to transform the buffer-wise execution model into a streaming pipeline.

B. Automatic Optimization Results

Running the evaluation with the optimization feedback loop greatly reduces the number of synthesis runs necessary to converge to predefined constraints. Instead of uniformly investigating the whole search space, the less promising spots are skipped rather early, whereas the most promising spot is very thoroughly explored. Figure 6 shows the results from an optimization run with the constraints II = 1 and resource usage < 6% of the Census block matching algorithm with image size 450 × 375 on a Zynq 7100. Blue dots represent Pareto optimal points.

2) HIPAcc Implementation

The DSL implementation for SAD block matching consists of a single kernel implementing a local operator with two loops. The first for iterating over both windows of the input images. The second for moving the second window along the epipolar line. Code generation is rather straight forward and the quality of the synthesis results almost solely depends on the setting the correct HLS pragmas.

For the Census difference, the process is quite different. Here, the DSL code describes a buffer-wise execution, as shown in Figure 5. Instead of only describing a single kernel, two kernels are necessary. The first one (vec) is a local operator of the window size 5 × 5 for computing binary vectors, representing the relation to the surrounding pixels. This kernel is instantiated twice, once for each input image. The second kernel (cmp) is a local operator as well, with a windows size of 60 × 1 representing the epipolar line. It compares the binary vectors computed in the previous step within that window and stores the position of the closest match. The intermediate result (the binary vectors) are stored in a temporary buffer. Through code generation, these buffers will be eliminated and replaced by stream objects provided by Vivado, in order to transform the buffer-wise execution model into a streaming pipeline.

C. Comparison: HIPAcc vs. Handwritten HDL Code

A comparison of both algorithm types, generated with HIPAcc and their handwritten equivalents, can be found in Table I. An image size of 450 × 375 has been chosen, whereas both implementations are kept generic enough to synthesize accelerators for other image dimensions as well. For the HIPAcc generated implementation, we ran the optimization loop with the constraints II = 1 and resource usage ≤ 100%. Hereby, we wanted to avoid artifacts introduced by Vivado HLS’s internal heuristics, as described above.
Vivado HLS was able to achieve an II of 1 for both HIPAc generated implementations. Therefore, the overall latency of those algorithms is similar compared to the handwritten performance. Regarding resource usage, the number of LUTs is slightly higher (20\%) for the Census difference and up to 74\% higher for SAD. Describing the SAD block matching algorithm in HIPAc requires language features that are currently not available. This leads to a window size within the local operator that is considerably larger than actually necessary, which can of course be avoided in the handwritten implementation. Due to this deficiency, the achievable clock frequency for SAD is noticeably lower (33\%) compared to the Census difference (9\%). Unfortunately, the number of used flip-flops tremendously exceeds the amount of flip-flops allocated by the respective handwritten equivalent. As the exceedance is similarly large for both, the Census difference and SAD, we attribute this issue to shortcomings within Vivado HLS.

Even though the handwritten implementation is more efficient compared to the version generated by HIPAc, code generation still gives great benefits. First of all, the productivity is significantly increased, as the necessary lines of DSL code are less than a quarter of the handwritten implementations. Second, the developer does not need to be an FPGA expert. In fact, the DSL code is completely independent of the target architecture. Therefore, the exact same algorithm code can be used to target GPUs or other dedicated accelerators (like the Intel Phi) as well.

V. Conclusion

In this work, we have presented an optimization feedback loop coupled with a DSL compiler. In contrast to handwritten HDL code or even handwritten HLS code, DSLs offer great productivity and deliver fairly good results. Through architecture knowledge provided within the DSL compiler, it is ensured that the generated code variants are efficient target-specific implementations, even though if the developer is not an architecture expert. Despite that, the most important benefit of DSLs is that not only functional portability but also performance portability is provided through those target-specific implementations. However, the most compelling argument for code generation is to easily change large parts of code by just flipping a compiler switch. Therefore, this offers the great possibility to interlock this approach with an automatic optimization loop. This optimization feedback loop can be used for rapid exploration of different code variants given predefined constraints. Therefore, this extension to the existing approach offers further control over code generation and gives developers the possibility to automatically optimize their implementations towards the desired design target without rewriting their code.

ACKNOWLEDGMENT

This work is supported by the German Research Foundation (DFG), as part of the Research Training Group 1773 “Heterogeneous Image Systems”.

REFERENCES

[15] K. Häubleng, M. Reichenbach, and D. Fey, “Fast and generic hardware architecture for stereo block matching applications on embedded systems”, in Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig), (Cancun, Mexico), 2014.

Table I

<table>
<thead>
<tr>
<th></th>
<th>HIPAc</th>
<th>Handwritten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II, LAT, BRAM, DSP, FF, LUT, F[MHz]</td>
<td>II, LAT, BRAM, DSP, FF, LUT, F[MHz]</td>
</tr>
<tr>
<td>SAD</td>
<td>1, 181,797, 8, 2, 140,228, 66,185, 182.38</td>
<td>1, 170,565, 4, 0, 29,288, 37,940, 271.59</td>
</tr>
<tr>
<td>Census</td>
<td>1, 180,090, 8, 0, 54,016, 23,144, 289.52</td>
<td>1, 170,561, 4, 0, 9,978, 19,247, 319.18</td>
</tr>
</tbody>
</table>