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Abstract
In this paper, we present an approach for simultaneous scheduling and placement of communicating modules for SoC
architectures including devices with partial reconfiguration support and at least one CPU. This approach includes (a) a
detailed modeling of the communication of modules and an optimization model for finding the best temporal and spatial
placement of modules on either CPU or on the reconfigurable device including communication and reconfiguration time
overheads, (b) a real SoC platform for slot-based module relocation and on-chip inter-module communication called
ESM, and (c) real experimental data based on experiments on this machine. Existing approaches either neglect inter-
module communication, are not able to solve the related problem, or do not provide real applications implemented on real
platforms.

1 Introduction
1.1 Classification of partitioning approaches
Hardware-Software Partitioning is known as one of the
major problems and challenges of co-design throughout
the last decade. It has lead to numerous approaches starting
with simple bi-partitioning algorithms, more complex par-
titioning methods [20, 7], as well as exact solutions based
on ILP formulations, e.g., [13, 18]. Current approaches
may be categorized and compared only loosely with re-
spect to the criteria application modeling, where applica-
tions are described in languages such as C, C++, SystemC
[16], or modeled directly by one or more abstract com-
municating tasks (or task graphs); architecture modeling,
where many approaches are able to model even multiple
and heterogenous processor and hardware modules com-
municating via either buses or dedicated links and memo-
ries (MPSoC); partitioning algorithm as described above;
and finally, objectives. Whereas the first approaches in lit-
erature were simple single-objective approaches optimiz-
ing for either execution time or cost, some of the newest
approaches are able to approximate Pareto-optimal solu-
tions (e.g., [4, 9]), thereby considering many objectives si-
multaneously such as speed, power, cost, reliability, and
many more, and thus allowing a designer to shift decision-
making after partitioning.

1.2 Motivation
In platform-based design, many systems incorporate hard-
ware components such as FPGAs [11, 10], which are at
least partially reconfigurable, so the system architecture

is not fixed but can vary at run-time. Except of a few
results on how to model reconfigurable architectures by
hierarchical architecture graphs [19], only very few ap-
proaches have extended the HW/SW partitioning problem
to such architectures [11, 10]. In this paper, we provide
one of the first approaches for hardware-software parti-
tioning that is able to a) model accurately reconfigurable
hardware, i.e., FPGAs included as part of a MPSoC, in-
cluding b) reconfiguration times, and space management of
free and occupied resources. Our subsequently presented
optimization model is used in an exact approach employ-
ing an ILP solver to statically compute optimal hardware-
software partitions with respect to execution time. c) Our
approach also allows blocks mapped to hardware to com-
municate with each other using a concept of a multiple
reconfigurable bus (RMB) [5]. Thus, we provide an ac-
curate incorporation of inter-module communication be-
tween hardware and hardware as well as between hardware
and software modules.

1.3 Related Work

In [15] it is approved that our choice to target dynamically
reconfigurable architectures is well-founded, because our
desired applications mainly depend on performance.
HW/SW scheduling algorithms for System-on-Chip plat-
forms with dynamically reconfigurable logic architectures
are exhaustivly studied in [14]. System performance for
tasks with data-dependent execution times is improved by
using dynamic schedulers instead of a static, compile time
scheduling techniques. Hereby no worst-case execution



times have to be assumed, which may heavily deviate from
the average case. This may prevent a highly under-utilized
hardware/software system at run-time. Our static schedul-
ing approach instead, prevents ready tasks ahead of time
and under-utilization by a fine-tailored resource and cost
model (e.g. placement dependent task communication costs,
single reconfiguration interface, FPGA heterogenities) and
detailed cost values measured on the corresponding, exist-
ing dynamically partial reconfigurable platform in depen-
dency of the data input.
The reconfiguration latency of dynamically reconfigurable
devices represents a major drawback, that must not be ne-
glected. New techniques to alleviate this problem are de-
veloped in [17] and integrated into an existing scheduling
environment. A run-time task scheduler decides, which
task implementation to execute by using a pareto curve re-
flecting the energy/performance trade-off. Hereby a initial
schedule, which neglects the reconfiguration overhead is
generated. Based on this a reuse, a prefetch and a replace-
ment unit modify the schedule and considerably reduce the
latency even for highly dynamic tasks. Our approach dif-
fers therein, that those reconfiguration aspects are already
taken into account for the decision, which task implemen-
tation to choose. Thus, a possibly more suitable implemen-
tation is selected.
Very closely related to our approach is the work presented
in [2][3]. That approach, however, differs in two major
aspects: a) We are able to provide exact solutions to the
hardware-software partitioning problem including recon-
figurable devices, and b) contrary to [2], we are able to
model and realize also on-chip inter-module communica-
tion based on a real architecture called ESM, see also Fig. 1.
This architecture, first presented in [6], is able to relocate
HW modules freely in areas called slots on a main FPGA.
Also, the architecture allows for online module communi-
cation, which is established automatically at run-time by
issuing requests between source and target HW module.
The reconfigurable computing HW/SW multitasking plat-
form, presented in [12], shows some similarities to our
platform. Tasks can be executed on the reconfigurable logic
or run in software and can communicate with each other.
The infrastucture consists of a uniformed HW/SW com-
munication scheme and a common HW/SW behavior. The
uniform communication is realized by a message passing
system in the operating system and a packet switched in-
terconnection network on the reconfigurable hardware. On
the ESM a circuit switched interconnection network can be
used by multiple HW modules independent of their posi-
tions. In contrast, the ESM platform allows a more flexible
HW task placement. Partial configuration bitstreams for
a task can be freely relocated, on the fly at runtime and
placed to each position. The needed I/O pins to the pe-
riphery, to access i.e. video input or output devices, get
connected to the actual position of the HW modul. Fur-
thermore, the ESM offers different communication meth-
ods with varying transmission rates and bandswidths. De-
pending on the placement and requirements of the com-

municating modules one choice might me more favorable
than another.

1.4 Organization of the Paper
In Section 2, we present the target architecture called ESM.
The optimization model for hardware-software partition-
ing is presented in Section 3. Detailed experimental results
are reported in Section 4. We conclude with ideas on future
work.

2 The Erlangen Slot Machine
The main idea of the Erlangen Slot Machine (ESM) [5,
6] architecture is to accelerate application development as
well as for research in the area of partially reconfigurable
hardware. The ESM platform is centered around an FPGA
that serves the main reconfigurable engine, and an FPGA
realizing a crossbar switch, see Figure 1. The advantage
of the ESM platform is its unique slot-based architecture
that allows 1D slot modules to be reconfigured indepen-
dently by delivering peripheral data through the separate
crossbar switch. The ESM architecture is based on the
flexible decoupling of I/O-pins from a direct connection to
an interface chip. This flexibility allows the independent
placement of application modules at run-time in any avail-
able slot. Thereby, run-time placement is not constraint by
physical I/O-pin locations, as the I/O-pin routing is per-
formed automatically in the crossbar.
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Figure 1 ESM architecture.

The two FPGAs are placed onto two physical boards called
BabyBoard and MotherBoard, using a Xilinx Virtex-II 6000
and a Xilinx Spartan-II 600 FPGA. Figure 1 shows the slot-
based architecture of the ESM, consisting of the Virtex-II
FPGA, local SRAM memories, configuration memory, and



a reconfiguration manager. The top pins in the north of the
FPGA connect to local SRAM banks. These SRAM banks
solve the problem of restricted intra-module memory, e.g.,
for video applications. The bottom pins in the south con-
nect to the crossbar switch.

2.1 Inter-module Communication
One of the central limiting factors for the wide use of par-
tial dynamic reconfiguration is the problem of inter-module
communication. Each module that is placed in one or more
slots on the device must be able to communicate with other
modules. For the ESM, we provide four main paradigms
for communication among different modules: a) direct com-
munication using bus-macros between adjacently placed
modules; b) secondly, shared memory communication us-
ing SRAMs or BlockRAMs is possible. However, only ad-
jacent modules can use these two communication modes.
For modules placed in non-adjacent slots, we provide c) a
dynamic signal switching communication architecture called
Reconfigurable Multiple Bus (RMB) [8, 21, 1]. Finally, the
communication between two different modules can also be
realized through d) the external crossbar.

2.1.1 Communication between adjacent modules

On the ESM, bus-macros are used to realize direct com-
munication between adjacently placed modules, providing
fixed communication channels that help to keep the signal
integrity upon reconfiguration.

2.1.2 Communication via SRAM

Communication between two neighboring modules can be
done by using external SRAM. This is particularly useful
in applications in which each module must process a large
amount of data, which is then sent to the next module, as
in the case of video streaming applications. On the ESM,
each SRAM bank can be accessed by the module placed
below as well as the direct neighbors placed right and left
to it. A controller is used to manage the SRAM access.
Depending on the application, the user may set the priority
of accessing the SRAM for these three modules.

2.1.3 Communication via RMB

In its basic definition, the Reconfigurable Multiple Bus ar-
chitecture consists of a set of processing elements or mod-
ules, each having access to a set of switched bus connec-
tions to other processing elements. The switches are con-
trolled by connection requests between individual mod-
ules. The RMB is a one-dimensional arrangement of switches
between N slots. In our FPGA implementation, the hori-
zontal arrangement of parallel switched bus line segments
allows for the communication among modules placed in
the individual slots. The request for a new connection is
done in a wormhole fashion, where the sender (a module in
slot Sk) sends a request for communication to its neighbor
(slot Sk+1) in the direction of the receiver. Slot Sk+1 sends
the request to slot Sk+2, etc., until the receiver receives and

acknowledges the request. The acknowledgment is then
sent back on the same way to the sender. Each module that
receives an acknowledgment sets its switch to connect two
line segments. Upon receiving the acknowledgment, the
sender can start the communication (circuit routing). The
wired and latency-free connection is then active until an
explicit release signal is issued by the sender module.

2.2 Hardware-Software Communication
Hardware tasks on the FPGA can communicate with Soft-
ware tasks on the PowerPC and vice versa via a single-
ported SDRAM Memory, which is connected to the cross-
bar. The access to this shared memory is supervised by a
dedicated Hardware-Controller on the crossbar. The com-
munication bandwith between a Hardware and a Software
task is therefore limited to 84,37 MBit/s. The setup time
for a transfer is 20 clock cycles.

2.3 Physical Properties

In order to model the physical platform, all physical prop-
erties and constraints of the platform itself as well as of the
provided infrastructure must be taken into account. Ide-
ally the FPGA device is a homogeneous two-dimensional
CLB array on which rectangular application modules are
placed. However, communication requirements and physi-
cal FPGA constraints do not provide this kind of environ-
ment.

2.3.1 Slot Arrangement

The main FPGA of the ESM is divided into 22 micro slots
with 12 I/O-pins each. Because the left and right slots
of the FPGA are connected to dedicated I/Os, one micro
slot on both the left and the right side of the FPGA is ex-
cluded. As the middle CLB columns are connected to ex-
ternal clock lines, two micro slots in the middle of the de-
vice are also excluded. Three micro slots can be grouped
logically into one so-called macro slot in order to allow
access to the RMB and to the SRAM banks. The resulting
slot refined architecture is shown in Fig. 2.
Due to the incorporation of BlockRAM and multipliers,
the Virtex-II FPGA architecture from Xilinx is divided into
columns. Each BlockRAM block occupies a whole col-
umn in the device; In the following we assume our XC2V6000
is divided into six macro slots that are spread over the de-
vice. Thereby, only macro slots 2 and 5 contain one Block-
RAM column.

2.3.2 Communication Costs

The ESM platform supports four different communication
schemes. Each approach has its own properties, such as
maximum bandwidth, signal delay and setup latency. The
RMB is the only scheme that has a varying setup latency
that is the product of the number of RMB elements to des-
tination and the setup time of four clock cycles. Using bus
macros for communication is the preferred choice, but it
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Figure 2 ESM slot architecture with six macro slots. In
order to allow access to the RMB crosspoints (CP) and
SRAM banks, one macro slot consists of three micro slots.

Scheme Data Bandwidth Delay Setup

Bus Macro 19.2 Gbits/s 2 ns none
RMB 6.4 Gbits/s 3 ns * CP 4 cycles * CP
Crossbar 1.8 Gbits/s 15 ns 18 cycles
SRAM 0.4 Gbits/s 20 ns 2 cycles

Table 1 Communication bandwiths and signal delays.

only works for adjacent modules. The maximum band-
width in all communication schemes is a factor of clock
speed and data bandwidth. In our experiments we assume
for the ESM a global clock speed of 50 MHz. All proper-
ties are listed in Table 1.

2.3.3 Reconfiguration Times

A Virtex-II device is basically configured in entities called
frames, which cover the whole height of the FPGA and are
one bit wide [22]. Depending on the resources the number
of frames are different. The resources used in the differ-
ent macro slots are: CLBs, BRAMs and BRAM-Intercon-
nect. The BRAM and the BRAM-Interconnect columns
are always next to each other. The BRAM-Interconnect
columns are used for wiring purposes and can therefore
also be used by a module, that does not require the ac-
tual BRAM column. To configure one CLB column or
a BRAM-Interconnect column, 22 frames must be writ-
ten. For a BRAM column this are 64 frames. The frame
length in terms of 32-bit words depends on the height of
the FPGA. For the Virtex-II 6000 FPGA, which consists
of 96 rows by 88 columns of CLBs, the frame length con-
sists of 246 32-bit words. As the reconfiguration manager
of the ESM uses the SelectMAP interface for program-
ming the main FPGA, a bandwidth of eight signals and
a maximum frequency of 50 MHz have to be taken into
account. The reconfiguration time for one CLB column as
well as for one BRAM-Interconnect column therefore re-
quires 246 words ∗ 22 frames ∗ 4 clock cycles ∗ 20 ns =
433 µs. The reconfiguration time for a BRAM column is

246 words ∗ 64 frames ∗ 4 clock cycles ∗ 20 ns = 1259,52
µs. Out of this we get the following reconfiguration times
for the different types of macro slots:

• one macro slot with 12 CLB-Columns: 12 ∗ 433 µs
= 5196 µs.

• one macro slot with 12 CLB-Columns + 1 BRAM-
Column + 1 BRAM-Interconnect Column: 13 ∗
433 µs + 1259,52 µs = 6888,52 µs. If a module,
that does not use the BRAM, is reconfigured into a
macro slot, which has a BRAM-Column, the above
described reconfiguration time is reduced to: 13 ∗
433 µs = 5629 µs.

3 Model for HW/SW Partitioning
In the following, we provide a detailed model of commu-
nication, placement and scheduling on reconfigurable SoC
architectures based on the ESM as a representative exam-
ple.

3.1 Mathematical Model

3.1.1 ESM Geometry and Task Graphs

The FPGA is split into 6 slots; Slots 2 and 5 provide access
to BlockRAM and multipliers. It takes cr time units to
reconfigure one slot. We assume that loading a module
on the processor takes cl time units (cl � cr). Each slot
can access the SRAM blocks directly to the left, on top
and directly to the right of the slot. The RMB has hRMB

parallel bus segments. The maximal length of any segment
can be restricted by setting wRMB to a value smaller than
six. Each slot has access to 36 pins located on the bottom
of the FPGA.
Given a task graph G = (T, A) with T = {t1, t2, . . . , tn},
the set of tasks to be executed on the platform and A =
{(ti, tj) ∈ T × T } the set of predecessor successor rela-
tions. If an edge has a non-zero weight, this weight spec-
ifies the amount of data a(ti,tj) that is to be sent from a
task to its successor. For each task there can be up to three
different implementations: Implementations using special
resources like BlockRAM or multipliers (SP). These im-
plementations have to be placed in slots 2 or 5. Hardware
implementations (HW) can be placed in any of the slots 1,
2, . . ., 6. Software implementations running on the pro-
cessor (SW); for ease of notation we identify the processor
with slot 0, even if on the ESM the processor(PowerPC) is
located externally on the Motherboard.

3.1.2 Communication

To be able to correctly model inter-module communication
each task ti ∈ T is split up into subtasks:

• Load (Lti): the subtask where the task is loaded.
• Acquire Data from Predecessors (Ati): a dummy

task for modelling the earliest time when the task
can start to acquire data from its predecessors.

• Acquire Data from Predecessor (A(tj ,ti)): There
are as many subtasks A(tj ,ti) as there are predeces-



sors to ti. In this task data is acquired from all pre-
decessors th of ti.

• Run (Rti): the task ti runs for its implementation-
dependent fixed execution time rSP

ti
, rHW

ti
, rSW

ti
.

• Forward Data to Successors (Fti): the dummy
task for modelling the earliest time when the task
can start to forward data to its successors.

• Forward Data to Successors (F(ti,tj)): There are
as many subtasks F(ti,tj) as there are successors to
ti. This task forwards data to each successor tj

of ti. Unless this is done asynchronously F(ti,tj)

equals A(ti,tj).
• End (Eti): a dummy subtask just for scheduling

purposes that will be explained later on.
We obtain a more detailed task graph GD = {TD, AD}.
For every ti ∈ T the detailed set of tasks TD contains all of
the above mentioned tasks Lti , A(th,ti), Rti , Fti , F(ti,tj)

and Uti . AD contains an edge for all subtask dependencies
({(Lti , A(th,ti)) for all (th, ti) ∈ A, (A(th,ti), Rti) for all
(th, ti) ∈ A, (Rti , Fti), (Fti , F(ti,tj)) for all (ti, tj) ∈ A,
(F(ti,tj), Eti) for all (ti, tj) ∈ A).
Hardware modules can acquire and communicate data in
five different ways. In the following we consider two tasks
ti and tj . Without loss of generality we assume that ti

precedes tj . Then we get the following modes of commu-
nication.
SRAM. Tasks ti and tj can transfer data via the SRAM
interface if they both support the SRAM interface and are
placed in two consecutive slots. Without loss of generality
assume that ti is located directly to the left of tj . Data to
be transfered has to be stored in the SRAM blocks directly
above ti or tj . To be able to access the data tj has to ask ti
where to find it. After tj has acquired all data ti’s slot can
be reconfigured with another module. Communicating via
the SRAM interface has constant setup and deletion cost
sSR and dSR. The data bandwidth is denoted by bSR.
Bus macro. Two tasks can communicate by utilizing bus
macros if they both support bus macros and are located in
consecutive slots. Upon request ti forwards all data to tj .
After doing so its slot can be reconfigured again. Commu-
nicating via the bus macro interface has neither setup nor
deletion cost (sBM = dBM = 0). The data bandwidth is
given by bBM.
RMB. To communicate using the RMB both tasks have
to support it. The distance of ti and tj may not exceed
wRB. Not more than hRB pairs of modules may simulta-
neously use the RMB. To acquire data tj has to request a
connection to ti. After the connection has been established
ti forwards the data to tj . Upon termination ti frees the
RMB segments used by that connection. Both setting up
and deleting a RMB connection causes distance dependent
costs sRB(mi, mj) and dRB(mi, mj). The data bandwidth
is given by bRB.
Crossbar. The crossbar interface is the most versatile as it
imposes no placement restriction at all. It is the only way
to directly forward data to or directly acquire data from a
software module is via the crossbar interface. Setup and

deletion of crossbar connections take constant time sCB

and dCB. The data bandwidth is given by bCB.
Common memory. Additionally there is a block of SDRAM
accessible by both the processor and the FPGA through the
crossbar interface. This way two hard- or software mod-
ules can communicate asynchronously. Setup and deletion
of connections takes constant time dependent on the setup
and deletion time of the crossbar connection sCM and dCM.
The data bandwidth is given by bCM.

3.2 ILP Formulation
The formulation resembles a resource-constrained open shop
scheduling with single server, setup cost, transportation
setup cost, and transportation cost.
The objective is min Cmax, i.e., minimize the makespan.

3.2.1 Variables

We use the following variables:

• χL
t ≥ 0: start of reconfiguration for task t.

• χA
(th,ti)

≥ 0: start of data acquisition from task th

by ti.
• χR

t ≥ 0: start of task t’s execution.
• χF

t ≥ 0: start of data forwarding of task t.
• χF

(ti,tj)
≥ 0: start of data forwarding from ti to tj .

• χE
t ≥ 0: end of task t.

• ιSP
t , ιHW

t , ιSW
t ∈ {0, 1}: indicator whether task t

is implemented using special resources (SP), hard-
ware (HW) or software (SW).

• πL
titj

∈ {0, 1}: indicates if task ti is reconfigured
before task tj .

• πCM
titjtktl

∈ {0, 1}: indicate the order in which two
pairs (ti, tj), (tk, tl) ∈ A of tasks may access the
common memory. As the forwarding operation of
ti (respecively tk) have to precede the the data ac-
quisition operation of tj (resp. tl) there are six or-
ders (ti, tj , tk, tl), (ti, tk, tj , tl), (ti, tk, tl, tj), (tk, ti, tj , tl),
(tk, ti, tl, tj), and (tk, tl, ti, tj). We will denote these
six orders by O.

• δtitj : distance of ti and tj for (ti, tj) ∈ A.
• λts ∈ {0, 1}: indicates if task t is placed in slot s.

For ease of notation, s = 0 is the processor.
• λtitjs ∈ {0, 1}: auxiliary variable indicating that ti

and tj are placed in slot s.
• γSR

(ti,tj)
, γBM

(ti,tj)
, γRB

(ti,tj)
, γCB

(ti,tj)
, γCM

(ti,tj)
∈ {0, 1}:

indicator what communication paradigm is used to
transfer data from task ti to task tj .

3.2.2 Constraints

Next we list and explain the set of constraints. We denote
by P = {SP, HW, SW} the possible implementations of
a task and by C = {SR, BM, RB, CB, CM} all availabe
means of communication.
For all ti, tj ∈ T , either ti is reconfigured before tj or vice
versa:

πL
titj

+ πL
tj ti

= 1 (1)



If ti is to be reconfigured before tj , this should be well
reflected in the starting times for reconfiguration:

χL
ti

+
∑
p∈P

cpι
p
ti
≤ χL

tj
+ (1 − πL

titj
)M (2)

A task ti can start to aqcuire data from its predecessors th

only after it has been loaded on either the FPGA or the
processor:

χL
ti

+
∑
p∈P

cpι
p
ti

≤ χA
ti

(3)

χA
ti

≤ χA
(th,ti)

(4)

Except for CM all means of inter-module communication
are synchronous or at least require the transmission of some
additional address information (SR). So in general the start-
ing times for acquisition and forwarding of data between
two tasks ti and tj are equal:

χF
(ti,tj)

≤ χA
(ti,tj)

(5)

χA
(ti,tj)

≤ χF
(ti,tj)

+ MγCM
(ti,tj)

(6)

For ease of notation let f c
(ti,tj)

denote the time needed to
transfer data from task ti to to tj using communication
medium c ∈ C:

f c
(ti,tj)

=

{
sc +

a(ti,tj)

bc + dc c �= RB

(sc + dc)δtitj +
a(ti,tj )

bc else
(7)

A task ti with no predecessors can start to run directly after
it is ready to acquire data (8). All other tasks have to wait
until all data is transmitted. For c ∈ C this is taken care
of in (9). Of course (9) needs linearization for the case
c = CB:

χA
ti

≤ χR
ti

(8)

χA
(th,ti)

+ f c
(th,ti)

γc
(th,ti)

≤ χR
ti

(9)

After task ti ran for its implementation dependent time
data can be forwarded to ti’s successor:

χR
ti

+
∑
p∈P

ιpti
rp
ti

≤ χF
ti

(10)

Task ti can start to forward data only after it is ready (11)
and must not end before all its data has been forwarded to
all successors:

χF
ti

≤ χF
(ti,tj)

(11)

χF
(ti,tj)

+ f c
(ti,tj)

γc
(ti,tj)

≤ χE
ti

(12)

Our objective is to minimize the makespan Cmax. The
makespan is the same as the termination time of the last
task ti:

χE
ti

≤ Cmax (13)

For each task ti exactly one implementation should be se-
lected: ∑

p∈P
ιpti

= 1 (14)

Each task ti should be executed either on the processor
(slot 0) or in any of the six FPGA slots

6∑
s=0

λtis = 1 (15)

If ti is to be executed in software it must be loaded on the
processor:

λti0 = ιSW
ti

(16)

If the tasks implementation uses special resourcers it can
only be located in columns 2 and 5, so for all t i ∈ T and
s ∈ {0, 1, 3, 4, 6}:

λtis ≤ 1 − ιSP
ti

(17)

Task ti is located in slot λti :

6∑
s=0

sλtis = λti (18)

The distance between the location of ti and tj is δtitj . This
distance is relevant for communication via SR and BM
only:

λti − λtj ≤ δtitj (19)

λtj − λti ≤ δtitj (20)

If ti and tj are to communicate via the SRAM or the bus
macro interface their distance has to be one, so for all
(ti, tj) ∈ A and c ∈ {SR, BM}:

δtitj ≤ 1 + 6(1 − γc
(ti,tj)

) (21)

If ti and tj are located in slot s, then set λtitjs to 1; for
this purpose, implement a logical and by the following
linearizition of λtisλtjs for all ti < tj ∈ T and s ∈
{0, 1, . . .6}:

λtis + λtjs − 1 ≤ λtitjs (22)

λtitjs ≤ λtis (23)

λtitjs ≤ λtjs (24)

πL
titj

+ πL
tjti

≥ λtitjs (25)

χE
ti

≤ χL
tj

+ (1 − πL
titj

)M + (26)

(1 − λmin{ti,tj}max{ti,tj}s)M

(25) makes sure that if ti and tj use the same slot, ti has to
precede tj or vice versa; moreover, if ti and tj are located
in the same slot and ti precedes tj then tj can be loaded
only after ti unblocks all resources used (26).



For all (ti, tj) ∈ A select exactly one type of communica-
tion medium: ∑

c∈C
γc
(ti,tj)

= 1 (27)

If task ti is run on the processor, it can only use the cross-
bar or the common memory attached to the crossbar for
acquiring and forwarding data:

ιSW
ti

≤ γCB
(th,ti)

+ γCM
(th,ti)

(28)

ιSW
ti

≤ γCB
(ti,tj))

+ γCM
(ti,tj)

(29)

If any other communication paradigm is used for forward-
ing, the task has to be run in hardware, so for all (t i, tj) ∈
A and c ∈ {SR, BM, RB}:

ιSP
ti

+ ιHW
ti

≥ γc
(ti,tj)

(30)

ιSP
tj

+ ιHW
tj

≥ γc
(ti,tj)

(31)

Finally there are some constraints that deal with the ac-
cess to the memory attached to the crossbar. Only one
task may access this memory at any given point in time.
As mentioned above there are six feasible data forward-
ing/acquisition orders denoted by O for every pair (t i, tj),
(tk, tl) ∈ A. If both of these edges are common memory
edges exactly one of the access orders has to be selected
(32, 33, 34):

γCM
(ti,tj)

+ γCM
(tk,tl)

− 1 ≤
∑
o∈O

πCM
o (32)

∑
o∈O

πCM
o ≤ γCM

(ti,tj)
(33)

∑
o∈O

πCM
o ≤ γCM

(tk,tl)
(34)

Selecting one order o ∈ O fixes an access pattern to the
common memory. For each order there is a group of three
equations. We only list one group for the order (t i, tk, tj , tl):

χF
(ti,tj)

+ fCM
(ti,tj)

πCM
titktjtl

≤ χF
(tk,tl)

+ (1 − πCM
titktjtl

)M
(35)

χF
(tk,tl)

+ fCM
(tk,tl)

πCM
titktjtl

≤ χA
(ti,tj)

+ (1 − πCM
titktjtl

)M
(36)

χA
(ti,tj)

+ fCM
(ti,tj)

πCM
titktjtl

≤ χA
(tk,tl)

+ (1 − πCM
titktjtl

)M
(37)

4 Experimental Results
We have successfully tested our ILP on a wide range of
randomly generated task graphs. Based on this computa-
tional experience, it is safe to say that we can solve any
small instance up to 20 tasks in less than an hour on a Pen-
tium IV clocked at 3 GHz. As a solver for the ILP we
employed ILOG CPLEX 10.0. Instead of listing results on
randomly generated instances we will discuss the results
obtained for a small JPEG example.

Task HW8 SW8 HW256 SW256

RGB2YCbCr 1.38 5.52 1310.82 5243.28
2D-DCT 9.06 36.24 9175.14 36700.56
Quantize 1.54 6.16 1310.98 5243.92
Huffman 1.56 62.40 1310.00 5244.00

Table 2 Hardware execution times in micro seconds for the
JPEG case study for 8x8 and 256x256 8 bits data blocks.

This example is based on the JPEG encoder depicted in
Fig. 3; it is similar to the case study made in [2]. The data
for tasks like color conversion, DCT, quantize and Huff-
man were obtained after place and route of the synthesized
modules under placement and routing constraints. Multi-
ple instances of the JPEG encoder tasks are used to process
the problem in parallel, as the nature of problem allows in-
dependent data processing.
For SW implementations we assume for each task a execu-
tion time that is four times slower than the HW implemen-
tation.

RGB2YCbCr

Compressed Image

DCT

Quantize

Huffman

Color Image

R1 R2 R3

D4 D5

Q6

H8

Q7

Figure 3 Task graph for the JPEG encoder.

Implementation details of each task are presented in Ta-
ble 2. These eight tasks are to be partitioned between six
available macro slots in HW and one processor. All ex-
ecution times are for a 8x8 and 256x256 blocks of 8 bits
data.
Solving the ILP for the 8x8 case took 10.19s with the above
mentioned equipment. The solution implies that the 8x8
instance can be executed in roughly 0.94976ms. This is
less than it would take to configure all eight tasks on the
FPGA. Consequently all tasks are mapped to the proces-
sor. As software tasks can only communicate using the
common memory all communication between tasks is done
this way.
When increasing the amount of data to be processed, the
picture changes. Solving the ILP for the 256x256 case
took 1.29s. Without reconfiguration overhead executing all
tasks on the FPGA would take roughly 13ms. Now some
of the tasks are executed in software. Others are placed
on the FPGA. Communication is mostly done using the re-
configurable multiple bus and the common memory.
When further increasing the amount of data all tasks are
executed in hardware.



5 Conclusion
In this paper, we presented an exact approach to hardware-
software partitioning for SoC architectures including at least
one processor and multiple, concurrently running hardware
slots. Novel with respect to existing approaches is the
joint consideration of schedulding and module placement
during partitioning, while considering not only reconfig-
uration cost, but also communication cost. To the best
of our knowledge, our approach constitutes the first inte-
grated model for a real-world reconfigurable architecture;
we show that it is not only possible to formulate this com-
plex task as an integer linear program, but also to solve it
for actual instances.
Although there may be other ways of communication on
SoC architectures, we believe that those five considered
here are quite representative for FPGA-based reconfigurable
devices; this makes our model interesting beyond the par-
ticular ESM architecture that was used to verify the real
experiments presented in Section 4.
Obviously, solving integer linear problems is an NP-complete
problem, so it is not too surprising that the computational
difficulties increase with the problem size, in particular
with the number of tasks. However, some part of the prac-
tical difficulties may also be due to the relatively large
number of binary variables to model logical dependencies.
We are optimistic that constraint programming in combina-
tion with integer linear programming will allow us to solve
larger instances.
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