
A New Approach for On-line Placement on Reconfigurable Devices∗

Ali Ahmadinia, Christophe Bobda, Marcus Bednara , Jürgen Teich
Department of Computer Science 12

University of Erlangen-Nuremberg, Germany
{ahmadinia,bobda,bednara,teich}@cs.fau.de

Abstract

By increasing the amount of resources on reconfigurable
platforms with the abililty of partial reconfigurability, the
issues of the management of these resources and their shar-
ing among different tasks will become more of a concern.
Online placement is one of these management issues that is
investigated in this paper. Here we present a new approach
for online placement of modules on reconfigurable devices,
by managing the occupied space rather the free space on
the device. Also an optimization of communication between
running modules themselves and outside of the chip is pro-
posed. The experimental results show a considerable de-
crease in communication and routing costs.

1 Introduction

Modern reconfigurable devices allow reconfiguration of
a part of the device while the rest remains unchanged. This
allows tasks to be allocated on parts of the space of the re-
configurable device for their execution at run-time. Run-
time space allocation, also known as temporal placement or
on-line placement is a central part in reconfigurable com-
puting. Unfortunately, much research was not dedicated to
this purpose. This is partly due to the fact that manufac-
turers of reconfigurable device currently do not provide de-
vices with unlimited partial reconfiguration capabilities as
well as tools for partial reconfiguration. As such devices
begin to appear on the market, a strong investigation of on-
line placement is needed. For the on-line placement prob-
lems, two subproblems have to be solved in order to place a
ready to execute task:

1. Identifying the set of potential sites to place the new
task.

2. Selecting the best site to place the component accord-
ing to a set of given criteria.

∗Supported in part by the German Science Foundation (DFG),
SPP 1148 (Rekonfigurierbare Rechensysteme).

Most of the work on on-line placement [1][2][3] uses a free
space manager to solve subproblem 1. The free space on the
device is represented as a set of empty rectangles. For an in-
coming component, one of the empty rectangles is chosen
according to the placement strategy (best-fit, first-fit, etc...)
, the task is placed inside the chosen rectangle and the new
set of empty rectangles is computed. The main drawback
of this method (free space segmentation) is that the set of
empty rectangles increases very fast each time a new task is
placed, thus making the search for a suitable site (subprob-
lem 2) difficult. Moreover, incoming tasks are handled as
independent entities. Therefore the communication aspect
is neglected.
In this paper, we present our new approach for on-line
placement of components on reconfigurable devices. It ex-
ploits the fact that the set of empty rectangles grows much
faster than the set of placed rectangles (tasks) and therefore
it is more suitable to manage the occupied space rather than
the free space on the device. In real application each task
communicates somehow with its environment. This com-
munication is done in form of inputs to and outputs from
the tasks. Therefore communication among tasks plays an
important role in our placement strategy. The optimization
of the communication is an important criterion in finding
the solution of subproblem 2.
The organization of the paper is as follows: Section 2 gives
the formal definitions of the on-line placement problem.
Section 3 explains the on-line placement algorithm. Section
4 describes the implementation of our on-line placement ap-
proach. In Section 5 we do some evaluations of our method
and we conclude the paper in Section 6.

2 Background and Definitions

Before explaining the online placement problem, the
definitions and assumptions of our system model accord-
ing to the related work in this area will be given.
We assume that a reconfigurable device R is made upon a
set of reconfigurable Processing Elements (PE) arranged in
rectangular array with H rows and W columns. The PEs can

be somehow connected together.
Our model of dynamic reconfiguration is made upon a
scheduler, an on-line placer and the reconfigurable device
(Figure 1). The scheduler manages the tasks and decides
when a task should be executed. Then the task is given to
the placer which will try to place it on the device, i.e allo-
cating a set of PEs for that task. If the placer is not able to
find a site for the new task, then it will be sent back to the
the scheduler which can decide to send it later or to send an-
other task to the placer. In this case, we say that the task is
rejected. The development of a scheduler is not in the scope
of this work. We are interested in the development of the
placer part of our system. For each task to be placed on a

Figure 1. A multitasking sytem on reconfig-
urable device

reconfigurable device, we further assume that an implemen-
tation as a rectangular block is available with the inputs and
output ports on its boundary. This implementation is stored
in a module database, and will be retrieved on demand. We
define the characteristics of a task as follows:

Definition 1 (Task Characteristics) Given a set of tasks
T = {t1, t2, ..., tm}. The characteristic of a task tk ∈ T is
4-tupel (ak,ek,wk,hk) where

• ak is arrival time of task tk

• ek is execution time of task tk

• wk is width of the corresponding module for task tk in
terms of PE

• hk is height of the corresponding module for task tk in
terms of PE

We set tk = (ak,ek,wk,hk)

The arrival time of a task is the time when the placer re-
ceives the task from the scheduler, and it is independent
from if the task is placed or rejected. At each point in time,
the placer contains a Dynamic Set of Tasks that we call it
DST. The DST consists of the running tasks and the new
task to be placed on the device. Elements are dynamically
inserted and removed from the DST.
Also we assume that tasks are non-preemptive because of
high configuration overhead. Although this assumption
does not influence out placement approach. Running mod-
ules are also non-replaceable. Since we are interested in
the communication among tasks and their environments, we
will not consider only connections among different tasks,
but also connections between tasks and the boundary of the
device. This is usefull for tasks which have an off-chip com-
munication. For a given DST, we define a dynamic set of of
connections (DSC). An element of the DSC is either a con-
nection among two tasks or a connection among one task
and a location on the boundary device.

Definition 2 (Task Communication) Given a dynamic set
of tasks (DST) T and a set of positions (pins) P on the
boundary of reconfigurable device R. We define the dynamic
set of communication (DSC) C as the set of edges between
T and (T ∪P).
The weight wpq of an edge (p,q) ∈C is the width of the bus
connecting the two elements p ∈ T and q ∈ (T ∪P).

Having defined the task characteristics, the DST and the
DSC, we explain in the next sections how our online place-
ment algorithm works.

3 Algorithms

3.1 Space Manager

As mentioned in the introduction, the first part of the
placement problem is to identify all possible sites where a
new module can be placed.
The easiest way to solve this subproblem is to use a Brute
Force Algorithm. For each new component c to be placed,
the Brute Force Algorithm solves the first subproblem by
scanning all the positions on the device. For each position
p = (xp,yp), it checks if an overlapping will occur between

c and a placed module, if the component c is placed at loca-
tion p.
Having solved subproblem 1, the optimal placement posi-
tion is computed by computing the placement cost for each
of the locations found in the first step and select the best one
as the optimal solution.
The Brute force requires O(H×W × n) time to solve sub-
problem 1. H is the height, W the width of the reconfig-
urable device and n is the number of running tasks on the
hardware.
Bazargan et al. [1] proposed to store only the free spaces
as maximal rectangles, however the complexity of this ap-
proach is O(n2). For large reconfigurable devices, H and W
are greater than n, thus making the Bazargan approach bet-
ter than the Brute Force approach. However, in Bazargan’s
approach, a binary tree is used for managing empty rectan-
gles, which is complicated to keep updated by deletion and
insertion of modules, because in some cases many nodes
of the tree have to be changed. Hence we propose a sim-
pler and faster approach with complexity of O(n). Contrary
to the Bazargan’s approach, we propose to manage the oc-
cupied space of the device rather than the free space. Our
approach is based on the observation that the set of empty
rectangles on the device grows much faster than the set of
placed components, therefore it will be much faster to use
the occupied space to find the set of free sites where the new
component can be placed.
Without loss of generality, we will consider that compo-
nents are placed relatively to their lower left positions. We
first define the impossible placement region (IPR) for a new
component.

Definition 3 (IPR relative to placed modules) For a new
component c to be placed on the device and a placed com-
ponent c′, the Impossible Placement Region (IPR) Ic′(c) of c
relative to c′ is the region where c cannot be placed without
overlapping with c′. For a set C′ of placed components, the
impossible placement region IC′(c) of c is the region where
c cannot be placed without overlapping with an element of
C′: IC′(c) =

S
c′∈C′ Ic′(c).

Definition 4 (IPR relative to the device) The Impossible
Placement Region IR(c) relative to the device is the region
of the device where c cannot be placed without overlapping
with the external area of the device.

Definition 5 (Impossible and Possible Placement Regions)
The IPR for a new component c is identified by IC′(c) and
IR(c): I(c) = IC′(c)∪ IR(c)
The possible placement region (PPR) P(c) of c is obtained
by subtracting the IPRs of the running components and
that of the device from the device area. If U is the set of all
locations on the device, then P(c) = U− I(c).

For a new component c with height hc and width wc to be
placed on the device and a placed component c′, the Im-
possible Placement Region (IPR) Ic′(c) of c relative to c′ is
identified by computing the left margin with size hc−1 and
the bottom margin with size wc− 1 of the component c′ as
illustrated in figure 2.
By integrating this margin and the area of its running task,

Figure 2. IPR of a new module relative to a
placed one

we will have the impossible area for placing the new mod-
ule, which is arisen by this running task. Then these mar-
gins should be defined for all runnig modules to have the
impossible area arised from all placed modules. Also there
exist two margins for the border of the reconfiguable device.
It is obvious that the margins for each placed module must
be recomputed as a new module arrives for placement.
Computing the IPR relative to the device and each placed
component as described before gives us the set of IPRs as
shown in figure 3. The solution of subproblem 1 can be ob-
tained by set subtracting the IPRs from the total device area.
Since we have to compute the extended margins for the run-
ning modules and two regions relative to the device for solv-
ing the subproblem 1, the required steps of our algorithm is
O(n).

3.2 Fitter

The second subproblem in online placement is to find
the optimal position for placing the new module from the
set of possible placement regions. A simple approach con-
sists of scanning all the possible placement positions, and

Figure 3. The area of impossible positions for
the new module

computing the placement cost for each position and then
selection of the optimal one. This straightforward but inefi-
cient approach requires O(|PPR| ∗n) where n is the number
of placed components. The Brute Force method is there-
fore too costly for an online placement algorithm. Instead
of computing the placement cost for each point and select-
ing the best one, we will first compute the point popt which
gives us the optimal placement cost. If popt is located within
the PPR then we have the solution of subproblem 2. Oth-
erwise, we will look for the closest point to popt which is
located in the PPR and select it as the optimal placement
position.
For definiton of optimal point, we will first define our cost
function, which should be minimized by the optimal point.
One of the most important cost functions is routing cost.
Then our main goal here is to place the components in
such a way that the communication among components is
optimal. This goal can be reached by placing connected
components nearby each other. Furthermore, components
which have off-chip connections should also be placed on
the boundary of the device, not far from the pins that they
use.
We define the cost to minimize as the communication cost
among the components placed on the device in terms of dis-
tance and buswidth. We call this cost the routing cost and
formally define it as follows:

Definition 6 (Routing Cost) For two modules i and j, we
define the routing cost between modules i and j as follows:
RoutingCost(Ri j) =

((x j +
w j
2 − xi− wi

2)2 + (y j +
h j
2 − yi− hi

2)2)×wi j

In other words, the routing cost between two modules is
the weighted distance between them. In order to compute
the routing cost we use the center point of the compo-
nents instead of using the bottom left corner point as the
reference point. For module i, this is defined by the pair
(xi + wi/2,y + hi/2) where (xi,yi) define the lower left
position of i, wi the width and hi the height of i . If there is
no communication between two modules Pi,Pj, the wi j and
also the routing cost between them will be zero. When we
have (n−1) placed modules, and we want to place the n-th
module, then we should minimize the routing cost of this
module to all other placed ones. According to the definition
6, this corresponds to equation 1:

min{
n−1

∑
i=1

(((xn +
wn

2
− xi−

wi

2
)2 + (yn +

hn

2
− yi−

hi

2
)2)×win)}

(1)

In Equation 1, xn and yn are variables and other parame-
ters are fixed. As xn and yn are independent of each other,
equation 1 can be written as equation 2 and equation 3:

min{
n−1

∑
i=1

((xn +
wn

2
− xi−

wi

2
)2×win)} (2)

min{
n−1

∑
i=1

((yn +
hn

2
− yi−

hi

2
)2)×win)} (3)

The value in equation 2 is a function of xn, then for mini-
mizing we should find in which point the partial derivative
of this function for xn is zero, that means:

∂{∑n−1
i=1 ((xn + wn

2 − xi− wi
2)2×win)}

∂xn
= 0 (4)

Therefore, the optimal value of xn is:

xn =
∑n−1

i=1 win(xi + wi
2 − wn

2)

∑n−1
i=1 win

(5)

In a similar way, we can compute the optimal value for yn:

yn =
∑n−1

i=1 win(yi + hi
2 − hn

2)

∑n−1
i=1 win

(6)

After finding the optimal point for placing the new module,
the point must be checked if it belongs to the PPR set. In
the case that the point is not located in the PPR set, we
will find the Nearest Possible Position (NPP) to the optimal
point. As shown in Figure 4, there are four nearest points
out of the IPR, that the closest one will be selected as the

Figure 4. Near possible points to the optimal
point

NPP. If also this point is not feasible, the former step will be
repeated until the nearest feasible one to be found. Figure 5
shows the impossible areas which cover the optimal point
and how the near possible points are tried to be identified.
To find the NPP, a list of near possible positions according
to the each overlapping area is used. In the worst case
all the impossible areas cover this optimal point and the
number of points in the list will be O(n), then NPP can be
computed in O(n) time. The steps of the algorithm of NPP
is as follows:

Compute-OptimalPoint(new component)
if OptimalPoint is feasible then

place the component at the optimal point
else
NPP-Compute:

1. Find the 4 near points outside the margin, which the
selected point is located.
2. Insert these points to the optimal points list.
3. Select the closest point to the optimal point from the
near points list.
4. If the selected point is feasible then

place the component at the optimal point
else

remove it from the near points list, and repeat NPP-
Compute step.

4 Implementation

For implementing our online placement approach, we
use a linked-list of size O(n) (for n running tasks) to store
the placed and running modules on the reconfigurable de-
vice.
The second structure which has been used is a two-
dimensional matrix with the same dimension of the recon-
figurable device. This matrix represents the total status of
the device, such that each element of it gives the status of
one PE. It means when a point (PE) is occupied by a mod-

Figure 5. Near possible points to the optimal
point

ule, the corresponding element in the matrix will have a
pointer to the related module. Otherwise, the point in the
matrix shows the emptiness of the point. Also for identify-
ing PPR, the effects of extending and deleting margins will
be applied on this matrix. Using the matrix allows to ac-
cess each element and obtain its status in just one comput-
ing step. The other alternative data structure which needs
less memory is using linked-list. But in this case, we have
to parse the running module list for obtaining the status of
each element, and its complexity is O(n) in each step. As
mentioned before we use here the matrix, hence the compu-
tation is done faster.
Another data structure of our implementation is a dynamic
two-dimensional matrix which shows the communication
bandwidths between each pair of running modules. The
size of its dimensions are the same as the number of running
tasks. This communication matrix is used for choosing the
best position for placing a new module, because we need the
communcation widths to compute and minimize the routing
cost of placing new module.
For finding optimal or near optimal point for placing a new
module, we use a linked list for saving near optimal points.
Always the nearest point to the optimal point from this list
will be selected, and this point will be checked in the men-
tioned matrix, if it is a feasible position or not. If it is so
then we have the NPP, otherwise this point is occupied by a
running module or its margin. Then the nearest points, out
of each border of the running module will be inserted to this
list, and the selected point will be removed. Also in this list,

the trace of our search will be stored, because to be sure not
to select a near point in a running module which has cov-
ered a prior near selected point. As mentioned before, in the
worst case, we will have 3n near points in this list, therefore
computing the NPP is O(n).

5 Evaluation

As we mentioned before, the complexity of our space
manager is O(n), but for the KAMER (Bazargan’s method),
it is O(n2) [1]. Therefore our space manager is faster. About
the fitter, contrast to related work, instead of using a heuris-
tic method, we try to optimize the defined routing cost func-
tion.

To investigate the influence of our proposed method for

Figure 6. The routing cost for different fitters
(task size : [20,40]): Nearest Possible Posi-
tion (NPP), First Fit (FF), Best Fit (BF)

the Fitter, we have implemented a system model, with ran-
domly generated task sets. This was done for different task
sizes and shapes, precisely for tasks with width and height
uniformly distributed in different intervals. To see the be-
haviour of algorithm with very different sizes of tasks, in-
tervals of [20,40] (Figure 6),and [20,30] (Figure 7), and
also to observe the behaviour for nearly square shaped tasks
[25,30] range (Figure 8) has been used. The size of chip has
been assumed 56x84 and 80x120, a 2-dimensional PE array,
similar to the Xilinx Virtex XCV800 and XCV2000E FPGA
devices, respectively.
As depicted in the following figures, our method is com-
pared with First Fit (FF) and Best Fit (BF) methods. Our
method gives the least costs and BF gives the most rout-
ing cost. The FF method in the case of nearly square tasks
reaches a comparable result to our method, but in all cases
needs more costs for routing.On the other side, FF behaves
much better than the BF in communcation costs. Also when
we use a larger chip size, our fitter works better than FF and

BF, because it has more space to find an optimal position.

Figure 7. The routing cost for different fitters
(task size : [20,30])

Figure 8. The routing cost for different fitters
(task size : [25,30])

6 Conclusion

In this paper we have discussed existing online place-
ment techniques for reconfigurable devices. We suggested
a new space manager and fitter for online placement. In
contrast to other approaches, our space manager keeps the
information of occupied space instead of free space. This
space manager has the best quality like KAMER [1], but
it is faster. We have also taken into account the commu-
nication of tasks in the fitter, which was not cared before.
We have conducted experiments to evaluate our fitter algo-
rithm and existing ones. We reported on simulations that
show a high improvement on the communication cost com-
pared to [1]. Concerning future work, we plan to develop

a framework, that allows a designer for an efficient mod-
ule implementation with respect to temporal placement and
simulation of communication costs. Furthurmore, we will
analyze our approach for its suitability to be implemented
in an embedded system environment.

References

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast
Template Placement for Reconfigurable Computing
Systems. In IEEE Design and Test of Computers, vol-
ume17, pages 68-83, 2000.

[2] A. Ahmadinia, and J. Teich. Speeding up Online
Placement for XILINX FPGAs by Reducing Config-
uration Overhead. To appear in Proceedings of 12th
IFIP VLSI-SOC, December 2003.

[3] H. Walder, C. Steiger, and M. Platzner. Fast Online
Task Placement on FPGAs: Free Space Partitioning
and 2-D Hashing. In Proceedings of Reconfigurable
Architectures Workshop (RAW). IEEE-CS Press, April
2003.

[4] Grant Wigley, and David Kearney, Research Issues in
Operating Systems for Reconfigurable Computing, In
Proceedings of the 2nd International Conference on
Engineering of Reconfigurable Systems and Architec-
tures (ERSA). CSREA Press, June 2002.

[5] Oliver Diessel and Hossam ElGindy, On scheduling
dynamic FPGA reconfigurations, In Kenneth A Haw-
ick and Heath A James, eds, Proceedings of Aus-
tralasian Conference on Parallel and Real-Time Sys-
tems (PART) , pp. 191 - 200, 1998, Springer-Verlag.

[6] Sándor Fekete, Ekkehard Köhler, and Jürgen Teich,
Optimal FPGA Module Placement with Temporal
Precedence Constraints, In Proc. of Design Automa-
tion and Test in Europe , IEEE-CS Press, 2001, pp.
658-665.

