
Speeding up Online Placement for XILINX FPGAs by Reducing Configuration
Overhead

Ali Ahmadinia Jürgen Teich
Department of Computer Science 12

Hardware-Software-Co-Design
University of Erlangen-Nuremberg, Germany

{ahmadinia, teich}@cs.fau.de

Abstract
Recent generations of FPGAs allow run-time partial

reconfiguration. To increase the efficacy of
reconfigurable computing, multitasking on FPGAs is
proposed. One of the challenging problems in
multitasking systems is online template placement.

In this paper, we describe how existing algorithms
work, and propose a new multi-stage method for
mapping of tasks to reconfigurable hardware. Also a
new fitting algorithm, as a part of online placement, has
been developed. This method tries to reduce the
reconfiguration overhead. First simulation results are
promising.

1. Introduction

The introduction of configurable hardware logic

devices in the 1980s created an alternative method for
high performance in applications where neither the
general purpose processor nor application specific
integrated circuit (ASIC) proved to be the preferred
choices. The general-purpose processor achieves
acceptable results for a wide range of applications and
the ASIC achieves improved performance, but for a
concentrated set of applications. The logic of a
configurable device can be programmed more than once
to fit the user's needs at the time of execution. This
hybrid device can result in better performance than the
general purpose processor without the fabrication
expense of the ASIC.

Reconfigurable systems can offer both high degrees
of parallelism and flexibility for compute-intensive
applications. In a run-time reconfigurable environment,
where partial (or full) reconfiguration of the hardware
device is allowed, both attributes offer advantages over
typical general-purpose processors. In such a system,
configuration data can be downloaded without
interrupting execution of previously loaded applications.
For this reason, applications must be placed as quickly as
possible to service the user’s need.

 The improvements in logic capacity and
performance have increased the usefulness of FPGAs
and broadened the range of potential applications of the

technology. However, these improvements have neither
resolved nor eliminated issues pertaining to efficient
placement of applications on configurable logic devices.
Run-time reconfigurable systems require fast placement
of mappings to the device(s), something that is not
always easily achieved, despite increased capability.

 We aim at decreasing reconfiguration overhead as
much as possible, to achieve a better performance in
online placement.

 This paper is organized as follows. Section 2 details
previous work in the area of online placement algorithms
for reconfigurable hardware. Section 3 will present a
new multi-stage mapping of tasks to reconfigurable
hardware. In fact, we have delayed deleting of module
from reconfigurable hardware. Section 4 will cover the
details of our fitting strategy, which is based on column
based configuration of Xilinx Virtex. The simulation
results will be shown in Section 5.

2. Previous Work

For the offline version of placement, an optimal

method has been developed, by using 3D placement of
tasks in time and area dimension for dynamic
reconfigurable hardware [1] (see figure 1).

Figure 1. Offline 3-D placement

 In the offline problem there is no time constraint for

finding an optimal placement. But in online placement,
modules are processed in the time they start and the
algorithm only looks at the current cut plane when
deciding on whether there is room for a new module or
where to place it. There are two main parts in online
placement algorithms. The first part is handling empty
rectangles. Bazargan et al. [2] have implemented two
categories of methods: 1. Keeping all the maximal empty
rectangles (KAMER). 2. Keeping disjoint empty
rectangles. These methods are shown in figures 2 and 3,
respectively. Since the first method keeps all the
maximal empty rectangles and hence checks all of them
for placing an arriving module, the quality of its
placement is better than any method the second category,
provided that the same bin-packing rule is used.
However, methods of the second category are faster.
Walder et al. [3] presented three newly developed
partitioning algorithms based on Bazargan's [2]
approach. They have also suggested a hash matrix
approach to maintain the free space. The second part of
placement is similar to online bin-packing problem.
Bazargan et al. [2] have proposed two-dimensional
extensions of First Fit (FF), Best Fit (BF) and Bottom
Left (BL).

Figure 2. Keeping all maximal empty
rectangles [2]

Figure 3. Keeping non-overlapping empty
rectangles [2]

3. Online-Mapping of Tasks to FPGA

In contrast to related work, after finishing the task,

we will a) not delete the configuration of the
corresponding module from the FPGA. Because a task
graph may have a periodic behavior, and the same task
may be requested again, then we can map it to the
preconfigured and inactive module on hardware without
any configuration overhead, and no update of the free
rectangle database is necessary. Furthermore, at any
arriving task request, we will b) first search if the same
task is running on the FPGA. Then, by computing the
mobility of a task with respect to a given deadline, we
will decide either to run it later on the same place, or to
locate a new module. The details of this approach are
illustrated in the following algorithm:

task_request (t);
check_same_task_on_hardware (t);
If (found_same_task (t))
{
 ALAP (t) = Deadline (t) – Execution (t);
 ASAP (t) = end_of_same_task (t);
 Mobility = ALAP (t) - ASAP (t);
If (Mobility >= 0)
{
Task "t" will be kept, until the termination of the same
task on hardware, and then will be mapped to the same
module.
}
}

Figure 4 shows the proposed system model,

consisting of a host processor, and a partially
reconfigurable hardware device. The FPGA provides
reconfigurable logic elements as a 2-dimensional CLB
(Configurable Logic Block) array. The placer and loader
form the part of a reconfigurable operating system
dealing with resource management. The reconfigurable
OS is run on a host processor.

 The general steps for mapping a task can be done in
the following way, in each step the process will be
finished if a solution is found:

I. Check if the task t can be executed on a preconfigured
and inactive module.
II. Check, if the same task is running now on the FPGA,
and then compute the mobility of the task (This step has
been explained in details above).
III. Check online placement.
IV. Delete preconfigured and inactive modules from
reconfigurable hardware, then check online placement
again.

 If the online placement can not find a feasible

space, the task will be checked again by online
placement at its ALAP time. This time if the online
placement is not successful, the task has to be rejected.

The management for reactivating modules is very
simple. For each module, we define start, reset, and
finish signals. When we configure a module on the
hardware, first its start input and then the reset input will
be activated. Then by finishing the computation of the
assigned task, the finish output will become high.
Therefore when the finish signal of one module is high,
it shows that the module is inactive and can be
reactivated by using its reset and start inputs.

Figure 4. The structure of reconfigurable

operating system

4. Online Placement

4.1. Partitioner

Our generic online placement algorithm consists of

two main parts. First, an empty space partitioning
manager both for insertion and deletion of modules.
Second, a fitter for choosing a free rectangle for placing
a module.

 As mentioned before, different methods of
partitioning have been developed in related work. Here,
we apply the KAMER method [2]. Although it has not a
good performance, it has the best quality. But this is not
important because we want to evaluate our fitting
strategy against other fitting methods in the following.

4.2. Fitter

A fitter decides which empty rectangle to be used for
placing a module. We suggest a fitting algorithm to
reduce the reconfiguration overhead, because
reconfiguration overhead is a main factor that prevents
dynamic reconfiguration from being accepted. With the
advance of FPGA technology, the reconfiguration time is
reduced dramatically. However, compared with ever
increasing FPGA speed, the reconfiguration delay is still
quite considerable. The configuration time often is 16%
to 71% of total running time [2,5].

 Currently available FPGA technology (Xilinx
Virtex) can be partially reconfigured since frames can be
read or written individually. Note that it is not possible
to configure a single CLB, since the frames belonging to
a given CLB are common to all other CLBs in the same
column. So, if a modification to a single CLB is
required, all frames belonging to the same column must
be read (operation called read-back), and the
modification is inserted over the read frames. Hence, the
configuration of a task potentially interferes with other
tasks allocated to the same columns [6,7,8]. Then, the
interfered tasks will be stopped, during the configuration
of the new module. Also, there is an extra time overhead
for state extraction and task reconstruction [9], to
suspend the interfered tasks and to restore them.

 Therefore, we propose a method with the criteria
of interfering running modules as least as possible. We
name this method "Least Interference Fit (LIF)", which
chooses the least low possible rectangle. The lowness of
a rectangle is defined as follows:

Lowness of an empty rectangle:

Maximum number of modules below the rectangle in
every column of the rectangle.

Previous fitting algorithms are as follows:

• The FF algorithm puts the arriving task in the lowest

indexed empty rectangle that can accommodate the
task.

• The BF algorithm chooses the smallest free rectangle

which can accommodate the task.

• The BL strategy tries to place a task in a sufficiently

big free area whose lower left corner is located
closest to the lower left corner of the FPGA.

Figure 5. Comparison of LIF approach with
other methods

M1

M4

M6

M2

M5

M3

A
B

C

D

FF

BF

BL

LIF

M7

M8

M9

M4

M3

M2
M2

M4

M3

M1

Free Space
Management

Configuration
Map Memory

Module

Operating System

Place

Load

HOST

FPGA

Task Requests

 Let us use an example to show how our fitting
algorithm works. Figure 5 shows that we want to place
module M9 on the FPGA. The First Fit (FF) method
chooses position A, then for placing the new module, we
must interfere with four modules: M1, M2, M5 and M8.
The Best Fit (BF) algorithm puts the module on position
B. In this case, M2 and M5 will be interfered. The
Bottom Left (BL) strategy places module M9 on position
D, but here we have to stop two modules namely M7, M3
too. In our approach (LIF), we put the module at position
C that will interfere only with module M2.

Figure 6. Example of normal fitting without
rotating the module

Figure 7. Placing module M5, after rotating

the module

 As a second possibility to decrease the interference
of other modules, we may change the shape of modules
before placement. We assume that modules are
relocatable, and as mentioned in [10], it is possible to
change the routing programmed into each cell to reflect
the overall rotation of the configuration. Therefore,
before placing a module Mi, with width of Wi and height

of Hi, we check if Hi is smaller than Wi, if yes, we rotate
the module.

In Figure 6, we have shown the problem if we don't
use this rotation. For placing M5, we have two choices:
position A and position B. If we want to place this
module in position A, modules M1, M4 and M5 must be
stalled, during the configuration time. In the case of
using position B, modules M1, M2 and M3 will be
interfered.

 Before starting the placement process, if we rotate
module M5, we can place M5 without interfering any
other running modules as illustrated in Figure 7.

5. Experimental Results

To investigate the influence of our proposed method

for Fitter, we have implemented a system model, with
randomly generated task sets. For the size of the tasks,
we have used two different classes. Classes 1 and 2
contain tasks with uniformly distributed size of module
dimensions in the ranges 5 to 35 and 5 to 50,
respectively.

 In our simulation framework, the tasks are
independent, and we assume that tasks cannot be
preempted. Each task set consists of 50 tasks, and the
arrival time of tasks is distributed in 0 to 3 time units, to
eliminate the influence of late arriving tasks on the
overall execution time [7].

 The size of chip has been assumed 56x84 and
80x120, a 2-dimensional CLB array, corresponding to
the Xilinx Virtex XCV800 and XCV2000E devices
respectively. The running time of tasks is distributed
uniformly in the interval of 20 to 200 time units.

 Figure 8 shows the results for chip size 56x84. As
depicted in Figure 8, the LIF method has the best
performance, and BL is also obtaining small total
execution time. When allowing rotation, we can see that
FF becomes worse, and other fitters show only a little
improvement. In a second experiment, we increased the
chip size to 80x120. As shown in Figure 9, for LIF and
BL, the execution time decreases. In this case, BF (like
FF) produces longer execution time.

0

2000

4000

6000

8000

10000

12000

FF BF BL LIF

Fitter

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

normal

rotated

(a)

M1 M2

M3

M4

M5

A

B

M1 M2

M3

M4

M5

0

2000

4000

6000

8000

10000

12000

FF BF BL LIF

Fitter

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

normal

rotated

(b)

Figure 8. Performance of fitting algorithms
(Chip Size: 56x84) (a) class1 (b) class2

6. Conclusion

In this paper we have discussed online placement

techniques for reconfigurable FPGA. We suggested a
multi-stage mapping of tasks to modules, and a new
fitting strategy for online placement. Also, we have
extended our fitting algorithm to include a pre-rotation.

 We have conducted experiments to evaluate FF,
BF, BL placements, and also our LIF method. In all
cases, LIF method has the best performance. Using
rotation for FF and BF gives sometimes even worse
results, because rotation makes modules higher, and that
is not proper for FF and BF. But for BL and LIF, rotation
always improves the total execution time, especially for
larger chip sizes.

 Concerning future work, we plan to evaluate our
multi-stage mapping of tasks to reconfigurable hardware
with realistic task sets. We also intend to develop an
efficient scheduling algorithm for meeting task
deadlines.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

FF BF BL LIF

Fitter

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

normal

rotated

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FF BF BL LIF

Fitter

To
ta

l E
xe

cu
tio

n
tim

e
(m

s)

normal

rotated

(b)

Figure 9. Performance of fitting algorithms
(Chip Size: 80x120) (a) class1 (b) class2

7. References

[1] Sándor Fekete, Ekkehard Köhler, and Jürgen Teich,
“Optimal FPGA Module Placement with Temporal Precedence
Constraints”, In Proc. of Design Automation and Test in
Europe , IEEE-CS Press, Munich Germany, 2001, pp. 658-665.
[2] Kiarash Bazargan, Ryan Kastner, and Majid Sarrafzadeh,
“Fast Template Placement for Reconfigurable Computing
Systems”, In IEEE Design and Test of Computers, volume 17,
pages 68-83, 2000.
[3] Herbert Walder, Christoph Steiger, and Marco Platzner,
“Fast Online Task Placement on FPGAs: Free Space
Partitioning and 2D-Hashing”, In Proc. of International
Parallel and Distributed Processing Symposium (IPDPS) /
Reconfigurable Architectures Workshop (RAW). IEEE-CS
Press, Nice France, April 2003.
[4] Grant Wigley, and David Kearney, “Research Issues in
Operating Systems for Reconfigurable Computing”, In
Proceedings of the 2nd International Conference on
Engineering of Reconfigurable Systems and Architectures
(ERSA). CSREA Press, Las Vegas USA, June 2002.
[5] M. J. Wirthlin, and B. L. Hutchings, “A dynamical
instruction set computer”, In Proc. of Field-Programmable
Custom Computing Machines, 1995, pp. 99-107.
[6] Daniel Mesquita, Fernando Moraes, Jos'e Palma. Leonardo
Möller, and Ney Calazans, “Remote and Partial
Reconfiguration of FPGA: tools and trends”, In Proc. of the
International Parallel and Distributed Processing Symposium
(IPDPS) / Reconfigurable Architectures Workshop (RAW).
IEEE-CS Press, Nice France, April 2003.
[7] Herbert Walder, and Marco Platzner, “Online Scheduling
for Block-partitioned Reconfigurable Devices”, In Proc. of
Design Automation and Test in Europe , IEEE Computer
Society Press, Munich Germany, 2003, pp. 290-295.
[8] “Virtex FPGA Series Configuration Architecture User
Guide”, XILINX XAPP151 v1.5, September 2000.
[9] L. Levinson, R. Männer, M. Sessler, and H. Simmler,
“Preemptive Multitasking on FPGAs”, In Proc. Symp. Field-
Programmable Custom Computing Machines (FCCM'00),
Napa, CA, USA, 2000, pp. 301-302.
[10] Katherine Compton, James Cooley, Stephen Knol, and
Scott Hauck, “Configuration Relocation and Defragmentation
for Reconfigurable Computing”, In Proc. of FPGAs for Custom
Computing Machines (FCCM). IEEE-CS Press, April 2001.

