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Abstract 
Recent generations of FPGAs allow run-time partial 

reconfiguration. To increase the efficacy of 
reconfigurable computing, multitasking on FPGAs is 
proposed. One of the challenging problems in 
multitasking systems is online template placement. 

In this paper, we describe how existing algorithms 
work, and propose a new multi-stage method for 
mapping of tasks to reconfigurable hardware. Also a 
new fitting algorithm, as a part of online placement, has 
been developed. This method tries to reduce the 
reconfiguration overhead. First simulation results are 
promising. 

 
 

1. Introduction 
 
The introduction of configurable hardware logic 

devices in the 1980s created an alternative method for 
high performance in applications where neither the 
general purpose processor nor application specific 
integrated circuit (ASIC) proved to be the preferred 
choices. The general-purpose processor achieves 
acceptable results for a wide range of applications and 
the ASIC achieves improved performance, but for a 
concentrated set of applications. The logic of a 
configurable device can be programmed more than once 
to fit the user's needs at the time of execution. This 
hybrid device can result in better performance than the 
general purpose processor without the fabrication 
expense of the ASIC. 

Reconfigurable systems can offer both high degrees 
of parallelism and flexibility for compute-intensive 
applications. In a run-time reconfigurable environment, 
where partial (or full) reconfiguration of the hardware 
device is allowed, both attributes offer advantages over 
typical general-purpose processors. In such a system, 
configuration data can be downloaded without 
interrupting execution of previously loaded applications. 
For this reason, applications must be placed as quickly as 
possible to service the user’s need. 

 The improvements in logic capacity and 
performance have increased the usefulness of FPGAs 
and broadened the range of potential applications of the 

technology. However, these improvements have neither 
resolved nor eliminated issues pertaining to efficient 
placement of applications on configurable logic devices. 
Run-time reconfigurable systems require fast placement 
of mappings to the device(s), something that is not 
always easily achieved, despite increased capability. 

   We aim at decreasing reconfiguration overhead as 
much as possible, to achieve a better performance in 
online placement. 

 This paper is organized as follows. Section 2 details 
previous work in the area of online placement algorithms 
for reconfigurable hardware. Section 3 will present a 
new multi-stage mapping of tasks to reconfigurable 
hardware. In fact, we have delayed deleting of module 
from reconfigurable hardware. Section 4 will cover the 
details of our fitting strategy, which is based on column 
based configuration of Xilinx Virtex. The simulation 
results will be shown in Section 5. 

 
2. Previous Work 

 
For the offline version of placement, an optimal 

method has been developed, by using 3D placement of 
tasks in time and area dimension for dynamic 
reconfigurable hardware [1] (see figure 1). 

 

 
Figure 1. Offline 3-D placement 



 
 In the offline problem there is no time constraint for 

finding an optimal placement. But in online placement, 
modules are processed in the time they start and the 
algorithm only looks at the current cut plane when 
deciding on whether there is room for a new module or 
where to place it. There are two main parts in online 
placement algorithms. The first part is handling empty 
rectangles. Bazargan et al. [2] have implemented two 
categories of methods: 1. Keeping all the maximal empty 
rectangles (KAMER). 2. Keeping disjoint empty 
rectangles. These methods are shown in figures 2 and 3, 
respectively. Since the first method keeps all the 
maximal empty rectangles and hence checks all of them 
for placing an arriving module, the quality of its 
placement is better than any method the second category, 
provided that the same bin-packing rule is used. 
However, methods of the second category are faster. 
Walder et al. [3] presented three newly developed 
partitioning algorithms based on Bazargan's [2] 
approach. They have also suggested a hash matrix 
approach to maintain the free space. The second part of 
placement is similar to online bin-packing problem. 
Bazargan et al. [2] have proposed two-dimensional 
extensions of First Fit (FF), Best Fit (BF) and Bottom 
Left (BL). 

 

 
 

Figure 2. Keeping all maximal empty 
rectangles [2] 

 

 
 

Figure 3. Keeping non-overlapping empty 
rectangles [2] 

 
3. Online-Mapping of Tasks to FPGA 

 
In contrast to related work, after finishing the task, 

we will a) not delete the configuration of the 
corresponding module from the FPGA. Because a task 
graph may have a periodic behavior, and the same task 
may be requested again, then we can map it to the 
preconfigured and inactive module on hardware without 
any configuration overhead, and no update of the free 
rectangle database is necessary. Furthermore, at any 
arriving task request, we will b) first search if the same 
task is running on the FPGA. Then, by computing the 
mobility of a task with respect to a given deadline, we 
will decide either to run it later on the same place, or to 
locate a new module. The details of this approach are 
illustrated in the following algorithm: 

 
task_request (t); 
check_same_task_on_hardware (t); 
If (found_same_task (t)) 
{ 
   ALAP (t) = Deadline (t) – Execution (t); 
   ASAP (t) = end_of_same_task (t); 
   Mobility = ALAP (t) - ASAP (t); 
If (Mobility >= 0) 
{ 
Task "t" will be kept, until the termination of the same 
task on hardware, and then will be mapped to the same 
module. 
} 
} 

 
Figure 4 shows the proposed system model, 

consisting of a host processor, and a partially 
reconfigurable hardware device. The FPGA provides 
reconfigurable logic elements as a 2-dimensional CLB 
(Configurable Logic Block) array. The placer and loader 
form the part of a reconfigurable operating system 
dealing with resource management. The reconfigurable 
OS is run on a host processor. 

 The general steps for mapping a task can be done in 
the following way, in each step the process will be 
finished if a solution is found: 

 
I. Check if the task t can be executed on a preconfigured 
and inactive module. 
II. Check, if the same task is running now on the FPGA, 
and then compute the mobility of the task (This step has 
been explained in details above). 
III. Check online placement. 
IV. Delete preconfigured and inactive modules from 
reconfigurable hardware, then check online placement 
again. 

 
   If the online placement can not find a feasible 

space, the task will be checked again by online 
placement at its ALAP time. This time if the online 
placement is not successful, the task has to be rejected. 



The management for reactivating modules is very 
simple. For each module, we define start, reset, and 
finish signals. When we configure a module on the 
hardware, first its start input and then the reset input will 
be activated. Then by finishing the computation of the 
assigned task, the finish output will become high. 
Therefore when the finish signal of one module is high, 
it shows that the module is inactive and can be 
reactivated by using its reset and start inputs. 
 
 

 
 

 
Figure 4. The structure of reconfigurable 

operating system 
 

4. Online Placement 
 
4.1. Partitioner 

 
Our generic online placement algorithm consists of 

two main parts. First, an empty space partitioning 
manager both for insertion and deletion of modules. 
Second, a fitter for choosing a free rectangle for placing 
a module. 

  As mentioned before, different methods of 
partitioning have been developed in related work. Here, 
we apply the KAMER method [2]. Although it has not a 
good performance, it has the best quality. But this is not 
important because we want to evaluate our fitting 
strategy against other fitting methods in the following. 
 
4.2. Fitter 
 

A fitter decides which empty rectangle to be used for 
placing a module. We suggest a fitting algorithm to 
reduce the reconfiguration overhead, because 
reconfiguration overhead is a main factor that prevents 
dynamic reconfiguration from being accepted. With the 
advance of FPGA technology, the reconfiguration time is 
reduced dramatically. However, compared with ever 
increasing FPGA speed, the reconfiguration delay is still 
quite considerable. The configuration time often is 16% 
to 71% of total running time [2,5]. 

    Currently available FPGA technology (Xilinx 
Virtex) can be partially reconfigured since frames can be 
read or written individually. Note that it is not possible 
to configure a single CLB, since the frames belonging to 
a given CLB are common to all other CLBs in the same 
column. So, if a modification to a single CLB is 
required, all frames belonging to the same column must 
be read (operation called read-back), and the 
modification is inserted over the read frames. Hence, the 
configuration of a task potentially interferes with other 
tasks allocated to the same columns [6,7,8]. Then, the 
interfered tasks will be stopped, during the configuration 
of the new module. Also, there is an extra time overhead 
for state extraction and task reconstruction [9], to 
suspend the interfered tasks and to restore them. 

    Therefore, we propose a method with the criteria 
of interfering running modules as least as possible. We 
name this method "Least Interference Fit (LIF)", which 
chooses the least low possible rectangle. The lowness of 
a rectangle is defined as follows: 

 
Lowness of an empty rectangle: 

Maximum number of modules below the rectangle in 
every column of the rectangle. 

 
Previous fitting algorithms are as follows: 
 
•  The FF algorithm puts the arriving task in the lowest 

indexed empty rectangle that can accommodate the 
task. 

 
•  The BF algorithm chooses the smallest free rectangle 

which can accommodate the task. 
 
•  The BL strategy tries to place a task in a sufficiently 

big free area whose lower left corner is located 
closest to the lower left corner of the FPGA. 
 

 

 
 
 

Figure 5. Comparison of LIF approach with 
other methods 
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    Let us use an example to show how our fitting 
algorithm works. Figure 5 shows that we want to place 
module M9 on the FPGA. The First Fit (FF) method 
chooses position A, then for placing the new module, we 
must interfere with four modules: M1, M2, M5 and M8. 
The Best Fit (BF) algorithm puts the module on position 
B. In this case, M2 and M5 will be interfered. The 
Bottom Left (BL) strategy places module M9 on position 
D, but here we have to stop two modules namely M7, M3 
too. In our approach (LIF), we put the module at position 
C that will interfere only with module M2. 

 
 

 
 
 

Figure 6. Example of normal fitting without 
rotating the module 

 
 

 
 

 
Figure 7. Placing module M5, after rotating 

the module 
 

    As a second possibility to decrease the interference 
of other modules, we may change the shape of modules 
before placement. We assume that modules are 
relocatable, and as mentioned in [10], it is possible to 
change the routing programmed into each cell to reflect 
the overall rotation of the configuration. Therefore, 
before placing a module Mi, with width of Wi and height 

of Hi, we check if Hi is smaller than Wi, if yes, we rotate 
the module. 

In Figure 6, we have shown the problem if we don't 
use this rotation. For placing M5, we have two choices: 
position A and position B. If we want to place this 
module in position A, modules M1, M4 and M5 must be 
stalled, during the configuration time. In the case of 
using position B, modules M1, M2 and M3 will be 
interfered. 

    Before starting the placement process, if we rotate 
module M5, we can place M5 without interfering any 
other running modules as illustrated in Figure 7.  
 
5. Experimental Results 

 
To investigate the influence of our proposed method 

for Fitter, we have implemented a system model, with 
randomly generated task sets. For the size of the tasks, 
we have used two different classes. Classes 1 and 2 
contain tasks with uniformly distributed size of module 
dimensions in the ranges 5 to 35 and  5 to 50, 
respectively. 

    In our simulation framework, the tasks are 
independent, and we assume that tasks cannot be 
preempted. Each task set consists of 50 tasks, and the  
arrival time of tasks is distributed in 0 to 3 time units, to 
eliminate the influence of late arriving tasks on the 
overall execution time [7]. 

    The size of chip has been assumed 56x84 and 
80x120, a 2-dimensional CLB array, corresponding to 
the Xilinx Virtex XCV800 and XCV2000E devices 
respectively. The running time of tasks is distributed 
uniformly in the interval of  20 to 200 time units. 

   Figure 8 shows the results for chip size 56x84. As 
depicted in Figure 8, the LIF method has the best 
performance, and BL is also obtaining small total 
execution time. When allowing rotation, we can see that 
FF becomes worse, and other fitters show only a little 
improvement. In a second experiment, we increased the 
chip size to 80x120. As shown in Figure 9, for LIF and 
BL, the execution time decreases. In this case, BF (like 
FF) produces longer execution time. 
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Figure 8. Performance of fitting algorithms 
(Chip Size: 56x84) (a) class1 (b) class2 

  
6. Conclusion 

 
In this paper we have discussed online placement 

techniques for reconfigurable FPGA. We suggested a 
multi-stage mapping of tasks to modules, and a new 
fitting strategy for online placement. Also, we have 
extended our fitting algorithm to include a pre-rotation.  

   We have conducted experiments to evaluate FF, 
BF, BL placements, and also our LIF method. In all 
cases, LIF method has the best performance. Using 
rotation for FF and BF gives sometimes even worse 
results, because rotation makes modules higher, and that 
is not proper for FF and BF. But for BL and LIF, rotation 
always improves the total execution time, especially for 
larger chip sizes. 

    Concerning future work, we plan to evaluate our 
multi-stage mapping of tasks to reconfigurable hardware 
with realistic task sets. We also intend to develop an 
efficient scheduling algorithm for meeting task 
deadlines. 
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Figure 9. Performance of fitting algorithms 
(Chip Size: 80x120) (a) class1 (b) class2 

 
7. References 
 
[1] Sándor Fekete, Ekkehard Köhler, and Jürgen Teich, 
“Optimal FPGA Module Placement with Temporal Precedence 
Constraints”, In Proc. of Design Automation and Test in 
Europe , IEEE-CS Press, Munich Germany, 2001, pp. 658-665. 
[2] Kiarash Bazargan, Ryan Kastner, and Majid Sarrafzadeh, 
“Fast Template Placement for Reconfigurable Computing 
Systems”, In IEEE Design and Test of Computers, volume 17, 
pages 68-83, 2000. 
[3] Herbert Walder, Christoph Steiger, and Marco Platzner, 
“Fast Online Task Placement on FPGAs: Free Space 
Partitioning and 2D-Hashing”, In Proc. of International 
Parallel and Distributed Processing Symposium (IPDPS) / 
Reconfigurable Architectures Workshop (RAW). IEEE-CS 
Press, Nice France, April 2003. 
[4] Grant Wigley, and David Kearney, “Research Issues in 
Operating Systems for Reconfigurable Computing”, In 
Proceedings of the 2nd International Conference on 
Engineering of Reconfigurable Systems and Architectures 
(ERSA). CSREA Press, Las Vegas USA, June 2002. 
[5] M. J. Wirthlin, and B. L. Hutchings, “A dynamical 
instruction set computer”, In Proc. of Field-Programmable 
Custom Computing Machines, 1995, pp. 99-107. 
[6] Daniel Mesquita, Fernando Moraes, Jos'e Palma. Leonardo 
Möller, and Ney Calazans, “Remote and Partial 
Reconfiguration of FPGA: tools and trends”, In Proc. of the  
International Parallel and Distributed Processing Symposium 
(IPDPS) / Reconfigurable Architectures Workshop (RAW). 
IEEE-CS Press, Nice France, April 2003. 
[7] Herbert Walder, and Marco Platzner, “Online Scheduling 
for Block-partitioned Reconfigurable Devices”, In Proc. of 
Design Automation and Test in Europe , IEEE Computer 
Society Press, Munich Germany, 2003, pp. 290-295. 
[8] “Virtex FPGA Series Configuration Architecture User 
Guide”, XILINX XAPP151 v1.5, September 2000. 
[9] L. Levinson, R. Männer, M. Sessler, and H. Simmler, 
“Preemptive Multitasking on FPGAs”, In Proc. Symp. Field-
Programmable Custom Computing Machines (FCCM'00), 
Napa, CA, USA, 2000, pp. 301-302. 
[10] Katherine Compton, James Cooley, Stephen Knol, and 
Scott Hauck, “Configuration Relocation and Defragmentation 
for Reconfigurable Computing”, In Proc. of FPGAs for Custom 
Computing Machines (FCCM). IEEE-CS Press, April 2001. 


