PARO – A Design Tool for the Automatic Generation of Hardware Accelerators

Frank Hannig, Hritam Dutta, and Jürgen Teich
Hardware/Software Co-Design, Department of Computer Science
University of Erlangen-Nuremberg, Germany
(hannig, dutta, teich)@cs.fau.de
URL: http://www12.cs.fau.de/research/paro

Overview

- Tool for the automated hardware synthesis of massively parallel embedded architectures
- Application domains: Video, audio, image, and other digital signal processing, scientific computing, ...
- Design entry of dataflow-intensive algorithms in form of a compact and intuitive language
- Advanced partitioning and scheduling techniques in order to balance trade-offs in cost and performance

PARO Design Flow

- **High-Level Transformations**
 - Affine transformations
 - Dead-code elimination
 - Constant/variable propagation
 - Loop perfectionization
 - Loop unrolling
 - Strength reduction of operators
 - Reductions: \(\Sigma, \Pi, \max, \min \)

- **Space-Time Mapping**
 - Allocation
 - Resource binding
 - Scheduling

- **Hardware Synthesis**
 - Processor element
 - Controller
 - Processor array
 - I/O interface
 - Functional resources, memory, I/O bandwidth

- **Simulation (PARO)**

- **Hardware Description (VHDL)**

- **Simulation (ModelSim)**

Space-Time Mapping

- Assignment of iteration points to processors (allocation) and start times (scheduling)

- **Scheduling**
 - Resource constraints
 - Module selection
 - Functional and software pipelining
 - Run-time dependent conditional and hierarchical partitioned algorithms
 - Mixed integer programming (MIP)

Hardware Synthesis

- Generation of platform and language independent RTL description
- Synthesis steps:
 1. Processor elements
 2. Array interconnection structure
 3. Controller
- Backend for VHDL

Case Studies

- **PARO Design Flow**

Conclusions

- Good scalability of the PARO methodology
- Processor array approach outperforms conventional loop unrolling (10-61% higher throughput)

- Generation of highly parallelized hardware accelerators