Finding Satisfying Assignments by Random Walk

Rolf Wanka, Erlangen
Overview

- Preliminaries

- A Randomized Polynomial-time Algorithm for 2-SAT

- A Randomized $O(2^n)$-time Algorithm for 3-SAT

- A Randomized $O((4/3)^n)$-time Algorithm for 3-SAT
Preliminaries (I)

Satifiability problem SAT: Given a Boolean formula Φ in Conjunctive Normal Form (CNF) over n variables x_1, \ldots, x_n and m clauses.

CNF = Conjunction of clauses;
Clause = Disjunction of literals;
Literal = variable or negation of variable

Question: Is there a truth assignment to the variables such that Φ evaluates to TRUE?

Example for $n = 4$ and $m = 5$:

$$\Phi = (x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)$$

Satisfied by

$$x_1 := \text{TRUE}; x_2 := \text{TRUE}; x_3 := \text{FALSE}; x_4 := \text{TRUE}$$
$k \in \mathbb{IN}$: For k-SAT, Φ is restricted to that each clause has exactly k literals.

So,

$$\Phi = (x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)$$

is an instance of 2-SAT.

Time complexity:

SAT is NP-complete.

3-SAT is NP-complete

2-SAT is in P.
A Randomized Polynomial-time Algorithm for 2-SAT (I)

2-SAT Algorithm \((c \in \mathbb{N} \text{ being an arbitrary constant})\):

- Start with an arbitrary truth assignment;
- Repeat up to \(2cn^2\) times, terminating if all clauses are satisfied the following iteration:
 - Choose an arbitrary clause \(C\) that is not satisfied;
 - Choose uniformly at random one of the literals in \(C\) and switch the value of its variable;
- If a valid truth assignment has been found, return YES
- Otherwise, return NO.

Theorem: \(\Phi\) is satifiable \(\Rightarrow Pr(\text{algo. returns YES}) \geq 1 - \frac{1}{2^c}\)
A Randomized Polynomial-time Algorithm for 2-SAT (II)

Let S represent a satisfying assignment.
A_i: the truth assignment after the ith iteration.
X_i: number of variables in A_i with identical value in S

Algorithm terminates with YES if $X_i = n$.

We have

$$
\Pr(X_{i+1} = 1 \mid X_i = 0) = 1
$$

$$
\Pr(X_{i+1} = j + 1 \mid X_i = j) \geq \frac{1}{2}
$$

$$
\Pr(X_{i+1} = j - 1 \mid X_i = j) \leq \frac{1}{2}
$$
Let S represent a satisfying assignment.

A_i: the truth assignment after the ith iteration.

X_i: number of variables in A_i with identical value in S

Algorithm terminates with YES if $X_i = n$.

We have

\[
\Pr(X_{i+1} = 1 \mid X_i = 0) = 1 \\
\Pr(X_{i+1} = j + 1 \mid X_i = j) = \frac{1}{2} \\
\Pr(X_{i+1} = j - 1 \mid X_i = j) = \frac{1}{2}
\]
Graphical representation

\[h_j = \text{expected no. of steps to reach } n \text{ when starting from } j \]

We have the system of equations:

\[
\begin{align*}
 h_n &= 0 \\
 h_j &= \frac{1}{2} \cdot (h_{j-1} + h_{j+1}) + 1 \quad \text{for } j \in \{1, \ldots, n-1\} \\
 h_0 &= h_1 + 1
\end{align*}
\]

Its unique solution: \(h_j = n^2 - j^2 \)
That means (if Φ is satisfiable, S the only valid assignment):

The expected number of iterations until the algorithm returns YES is at most n^2.

The algorithm executes $2cn^2$ iterations. Divide the iterations into c segments $\Sigma_1, \ldots, \Sigma_c$ of $2n^2$ iterations each. Let Z_i be the number of iterations from the start of Σ_i until S is found. Then by Markov's inequality,

$$\Pr(Z_i \geq 2n^2) \leq \frac{E[Z_i]}{2n^2} \leq \frac{n^2}{2n^2} = \frac{1}{2}$$

$$\Rightarrow \Pr(\text{algo. fails to find } S) \leq \left(\frac{1}{2}\right)^c$$
A Randomized $O(2^n)$-time Algorithm for 3-SAT (I)

First 3-SAT Algorithm:

– Start with an arbitrary truth assignment;
– Repeat up to ℓ times, terminating if all clauses are satisfied
the following iteration:
 • Choose an arbitrary clause C that is not satisfied;
 • Choose uniformly at random one of the literals in C
 and switch the value of its variable;
– If a valid truth assignment has been found, return YES
– Otherwise, return NO.

Theorem: Φ is satifiable \Rightarrow The expected no. ℓ of iterations to find
a valid truth assignment is $\Theta(2^n)$.
A Randomized $O(2^n)$-time Algorithm for 3-SAT (II)

Graphical representation assuming satisfying assignment S and counting the “correct” variables

$h_j = \text{expected no. of steps to reach } n \text{ when starting from } j$

We have the system of equations:

\[
\begin{align*}
 h_n &= 0 \\
 h_j &= \frac{2}{3} \cdot h_{j-1} + \frac{1}{3} \cdot h_{j+1} + 1 \\
 h_0 &= h_1 + 1
\end{align*}
\]

for $j \in \{1, \ldots, n - 1\}$

Its unique solution: $h_j = 2^{n+2} - 2^{j+2} - 3(n - j)$
A Randomized $O(2^n)$-time Algorithm for 3-SAT (III)

Observations:

1. If A_0 is chosen u. a. r, X_0 follows a symmetric binomial distribution,

 $$ \Pr(X_0 = j) = \binom{n}{j} \cdot \left(\frac{1}{2}\right)^n $$

 with $E[X_0] = \frac{1}{2}n$. I.e., there is an exponentially small but non-negligible probability that A_0 matches S in significantly more than $\frac{1}{2}n$ variables.

2. The algorithm is more likely to move towards 0 than towards n. The longer we run, the more likely we have moved towards 0.
Schöning’s 3-SAT Algorithm:

- Repeat up to ℓ times, terminating if all clauses are satisfied:
 (a) Start with a truth assignment chosen u. a. r.; [Restart]
 (b) Repeat the following up to $3n$ times terminating if all clauses are satisfied:
 (1) Choose an arbitrary clause C that is not satisfied;
 (2) Choose uniformly at random one of the literals in C and switch the value of its variable;
- If a valid truth assignment has been found, return YES
- Otherwise, return NO.
A Randomized $O((4/3)^n)$-time Algorithm for 3-SAT (II)

The probability of exactly k moves down and $k + j$ moves up in a sequence of $j + 2k$ moves:

$$\binom{j + 2k}{k} \cdot \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{j+k}$$
A Randomized $O((4/3)^n)$-time Algorithm for 3-SAT (III)

$q_j = (\text{lower bound on})$ the probability that Schöning’s algorithm reaches n when it starts with an assignment with exactly j mismatches.

So,

$$q_j \geq \max_{k \in \{0, \ldots, j\}} \binom{j + 2k}{k} \cdot \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{j + k}$$

In particular,

$$q_j \geq \binom{3j}{j} \cdot \left(\frac{2}{3}\right)^j \left(\frac{1}{3}\right)^{2j}$$
By Stirling’s Formula:

\[
\binom{3j}{j} = \frac{(3j)!}{j! \cdot (2j)!} \geq \frac{\sqrt{2\pi(3j)}}{4\sqrt{2\pi j} \cdot \sqrt{2\pi(2j)}} \cdot \left(\frac{3j}{e}\right)^{3j} \cdot \left(\frac{e}{2j}\right)^{2j} \cdot \left(\frac{e}{j}\right)^j
\]

\[
= \frac{\sqrt{3}}{8\sqrt{\pi}} \cdot \frac{1}{\sqrt{j}} \cdot \left(\frac{27}{4}\right)^j
\]

So,

\[
q_j \geq a \cdot \frac{1}{\sqrt{j}} \cdot \frac{1}{2^j}
\]

and \(q_0 = 1\).
A Randomized $O((4/3)^n)$-time Algorithm for 3-SAT (V)

Let q denote the probability that Schöning’s algorithm reaches n in $3n$ steps.

\[q \geq \sum_{j=0}^{n} \Pr(X_0 = n - j) \cdot q_j \]

\[\geq \frac{1}{2^n} + \sum_{j=1}^{n} \binom{n}{j} (\frac{1}{2})^n \cdot a \cdot \frac{1}{\sqrt{j}} \cdot \frac{1}{2^j} \]

\[\geq \frac{a}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n \]

Hence, the expected overall number of assignments tried is $1/q = O(\sqrt{n} \cdot (4/3)^n) = o(1.33333334^n)$.
Further Results

Iwama/Tamaki & Rolf: $O(1.32216^n)$

Schmitt/W.: $O(1.322030^n)$

Algorithm is a hybrid (running also the other known algorithms) that also swaps from time to time all values of the variables.